Symbol-based preconditioning for riesz distributed-order space-fractional diffusion equations

被引:0
|
作者
Mazza M. [1 ]
Serra-Capizzano S. [1 ]
Usman M. [2 ]
机构
[1] Department of Humanities and Innovation, University of Insubria, Via Valleggio 11, Como
[2] Department of Science and High Technology, University of Insubria, Via Valleggio 11, Como
关键词
Fractional diffusion equations; Preconditioning; Spectral distribution; Toeplitz matrices;
D O I
10.1553/ETNA_VOL54S499
中图分类号
学科分类号
摘要
In this work, we examine the numerical solution of a 1D distributed-order space-fractional diffusion equation. Discretizing the given problem by means of an implicit finite difference scheme based on the shifted Grünwald-Letnikov formula, the resulting linear systems show a Toeplitz structure. Then, by using well-known spectral tools for Toeplitz sequences, we determine the corresponding symbol describing its asymptotic eigenvalue distribution as the matrix size diverges. The spectral analysis is performed under different assumptions with the aim of estimating the intrinsic asymptotic ill-conditioning of the involved matrices. The obtained results suggest to precondition the involved linear systems with either a Laplacian-like preconditioner or with more general τpreconditioners. Due to the symmetric positive definite nature of the coefficient matrices, we opt for the preconditioned conjugate gradient method, and we compare the performances of our proposal with a Strang circulant alternative given in the literature. © 2021, Kent State University.
引用
收藏
页码:499 / 513
页数:14
相关论文
共 50 条