Recurrence analysis and synchronization of two resistively coupled Duffing-type oscillators

被引:0
|
作者
Saureesh Das
Rashmi Bhardwaj
机构
[1] Guru Gobind Singh Indraprastha University,University School of Basic and Applied Sciences
来源
Nonlinear Dynamics | 2021年 / 104卷
关键词
Recurrence plot; Complex dynamics; Duffing oscillator; Dynamical transitions; Chaos synchronization;
D O I
暂无
中图分类号
学科分类号
摘要
In this work, we study the complex dynamics and synchronization of two coupled Duffing-type circuits within the framework of recurrence quantification analysis (RQA). For the case of a Duffing oscillator driven by a sinusoidal voltage source, the behavior of various RQA parameters has been shown to reveal complex chaotic transitions taking place in its oscillatory behavior as the amplitude of forcing term is varied. The problem of synchronization of two identical Duffing oscillators coupled together resistively is further investigated using RQA. The simulated recurrence plot (RP) and plot for the τ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\tau $$\end{document}-recurrence/recurrence probability, p(τ)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$p(\tau )$$\end{document}, have been used extensively over different control parameter regime to understand the dynamical complexity including chaos synchronization for both one-way and two-way coupled Duffing-type oscillators. The critical parameter beyond which chaos synchronization occurs in such systems is determined.
引用
收藏
页码:2127 / 2144
页数:17
相关论文
共 50 条
  • [41] General synchronization dynamics of coupled Van der Pol-Duffing oscillators
    Kadji, H. G. Enjieu
    Yamapi, R.
    PHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS, 2006, 370 (02) : 316 - 328
  • [42] Transient synchronization mutation of ring coupled Duffing oscillators driven by pulse signal
    Wu Yong-Feng
    Zhang Shi-Ping
    Sun Jin-Wei
    Rolfe, Peter
    Li Zhi
    ACTA PHYSICA SINICA, 2011, 60 (10)
  • [43] Lag Synchronization in Coupled Multistable van der Pol-Duffing Oscillators
    Dudkowski, Dawid
    Kuzma, Patrycja
    Kapitaniak, Tomasz
    DISCRETE DYNAMICS IN NATURE AND SOCIETY, 2014, 2014
  • [44] Poincare maps of Duffing-type oscillators and their reduction to circle maps: II. Methods and numerical results
    Schmidt, K
    Eilenberger, G
    JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1998, 31 (16): : 3903 - 3927
  • [45] Synchronization analysis of coupled noncoherent oscillators
    Kurths, Juergen
    Romano, M. Carmen
    Thiel, Marco
    Osipov, Grigory V.
    Ivanchenko, Mikhail V.
    Kiss, Istvan Z.
    Hudson, John L.
    NONLINEAR DYNAMICS, 2006, 44 (1-4) : 135 - 149
  • [46] Synchronization Analysis in Models of Coupled Oscillators
    Toso, Guilherme
    Breve, Fabricio
    COMPUTATIONAL SCIENCE AND ITS APPLICATIONS - ICCSA 2020, PT I, 2020, 12249 : 889 - 904
  • [47] Noise-induced jumps in two coupled Duffing oscillators
    Rajasekar, S
    Valsakumar, MC
    Raj, SP
    PHYSICA A, 1998, 261 (3-4): : 417 - 434
  • [48] Mutual synchronization of two coupled chaotic oscillators
    Kal'yanov, EV
    Kal'yanov, GN
    JOURNAL OF COMMUNICATIONS TECHNOLOGY AND ELECTRONICS, 2000, 45 (05) : 534 - 542
  • [49] Synchronization in coupled oscillators with two coexisting attractors
    Zhu Han-Han
    Yang Jun-Zhong
    CHINESE PHYSICS LETTERS, 2008, 25 (07) : 2392 - 2395
  • [50] Synchronization Analysis of Coupled Noncoherent Oscillators
    Jürgen Kurths
    M. Carmen Romano
    Marco Thiel
    Grigory V. Osipov
    Mikhail V. Ivanchenko
    István Z. Kiss
    John L. Hudson
    Nonlinear Dynamics, 2006, 44 : 135 - 149