Recurrence analysis and synchronization of two resistively coupled Duffing-type oscillators

被引:0
|
作者
Saureesh Das
Rashmi Bhardwaj
机构
[1] Guru Gobind Singh Indraprastha University,University School of Basic and Applied Sciences
来源
Nonlinear Dynamics | 2021年 / 104卷
关键词
Recurrence plot; Complex dynamics; Duffing oscillator; Dynamical transitions; Chaos synchronization;
D O I
暂无
中图分类号
学科分类号
摘要
In this work, we study the complex dynamics and synchronization of two coupled Duffing-type circuits within the framework of recurrence quantification analysis (RQA). For the case of a Duffing oscillator driven by a sinusoidal voltage source, the behavior of various RQA parameters has been shown to reveal complex chaotic transitions taking place in its oscillatory behavior as the amplitude of forcing term is varied. The problem of synchronization of two identical Duffing oscillators coupled together resistively is further investigated using RQA. The simulated recurrence plot (RP) and plot for the τ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\tau $$\end{document}-recurrence/recurrence probability, p(τ)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$p(\tau )$$\end{document}, have been used extensively over different control parameter regime to understand the dynamical complexity including chaos synchronization for both one-way and two-way coupled Duffing-type oscillators. The critical parameter beyond which chaos synchronization occurs in such systems is determined.
引用
收藏
页码:2127 / 2144
页数:17
相关论文
共 50 条
  • [31] An optimal control approach to extreme local maxima for stochastic duffing-type oscillators
    Dunne, JF
    JOURNAL OF SOUND AND VIBRATION, 1996, 193 (03) : 597 - 629
  • [32] Extreme events in a class of nonlinear Duffing-type oscillators with a parametric periodic force
    Zhao, Dan
    Li, Yongge
    Xu, Yong
    Liu, Qi
    Kurths, Jurgen
    EUROPEAN PHYSICAL JOURNAL PLUS, 2022, 137 (03):
  • [33] Migration control in two coupled Duffing oscillators
    Phys Rev E., 5-B pt B (6237):
  • [34] Migration control in two coupled Duffing oscillators
    Raj, SP
    Rajasekar, S
    PHYSICAL REVIEW E, 1997, 55 (05): : 6237 - 6240
  • [35] Analysis for free vibration of duffing-type sliding systems
    Key Laboratory to Civil Engineering Durability of Shenzhen, Shenzhen University, Shenzhen 518060, China
    不详
    不详
    J Vib Shock, 2008, 9 (23-25):
  • [36] Synchronization of Two Coupled Phase Oscillators
    Wu, Yongqing
    Li, Changpin
    Sun, Weigang
    Wu, Yujiang
    DYNAMICAL SYSTEMS AND METHODS, 2012, : 105 - 113
  • [37] Chaos synchronization of two stochastic Duffing oscillators by feedback control
    Wu, Cunli
    Fang, Tong
    Rong, Haiwu
    CHAOS SOLITONS & FRACTALS, 2007, 32 (03) : 1201 - 1207
  • [38] POINCARE MAPS OF DUFFING-TYPE OSCILLATORS AND THEIR REDUCTION TO CIRCLE MAPS .1. ANALYTIC RESULTS
    EILENBERGER, G
    SCHMIDT, K
    JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1992, 25 (23): : 6335 - 6356
  • [39] Synchronization analysis of coupled Lienard-type oscillators by averaging
    Tuna, S. Emre
    AUTOMATICA, 2012, 48 (08) : 1885 - 1891
  • [40] Impulsive synchronization of coupled dynamical networks with nonidentical Duffing oscillators and coupling delays
    Wang, Zhengxin
    Duan, Zhisheng
    Cao, Jinde
    CHAOS, 2012, 22 (01)