Recurrence analysis and synchronization of two resistively coupled Duffing-type oscillators

被引:0
|
作者
Saureesh Das
Rashmi Bhardwaj
机构
[1] Guru Gobind Singh Indraprastha University,University School of Basic and Applied Sciences
来源
Nonlinear Dynamics | 2021年 / 104卷
关键词
Recurrence plot; Complex dynamics; Duffing oscillator; Dynamical transitions; Chaos synchronization;
D O I
暂无
中图分类号
学科分类号
摘要
In this work, we study the complex dynamics and synchronization of two coupled Duffing-type circuits within the framework of recurrence quantification analysis (RQA). For the case of a Duffing oscillator driven by a sinusoidal voltage source, the behavior of various RQA parameters has been shown to reveal complex chaotic transitions taking place in its oscillatory behavior as the amplitude of forcing term is varied. The problem of synchronization of two identical Duffing oscillators coupled together resistively is further investigated using RQA. The simulated recurrence plot (RP) and plot for the τ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\tau $$\end{document}-recurrence/recurrence probability, p(τ)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$p(\tau )$$\end{document}, have been used extensively over different control parameter regime to understand the dynamical complexity including chaos synchronization for both one-way and two-way coupled Duffing-type oscillators. The critical parameter beyond which chaos synchronization occurs in such systems is determined.
引用
收藏
页码:2127 / 2144
页数:17
相关论文
共 50 条
  • [21] Synchronization and chaos of coupled Duffing-Rayleigh oscillators
    Univ of Tokushima, Tokushima-shi, Japan
    IEICE Trans Fund Electron Commun Comput Sci, 10 (1581-1586):
  • [22] Symbolic Dynamics and Chaotic Synchronization in Coupled Duffing Oscillators
    Acilina Caneco
    Clara Grácio
    J Leonel Rocha
    Journal of Nonlinear Mathematical Physics, 2008, 15 : 102 - 111
  • [23] Synchronization and chaos of coupled Duffing-Rayleigh oscillators
    Mihara, T
    Kawakami, H
    IEICE TRANSACTIONS ON FUNDAMENTALS OF ELECTRONICS COMMUNICATIONS AND COMPUTER SCIENCES, 1996, E79A (10) : 1581 - 1586
  • [24] Correction to: Dynamic analysis of the response of Duffing-type oscillators subject to interacting parametric and external excitations
    Mehrdad Aghamohammadi
    Vladislav Sorokin
    Brian Mace
    Nonlinear Dynamics, 2022, 107 : 121 - 121
  • [25] New criteria on global asymptotic synchronization of Duffing-type oscillator system
    Yi, Xuejun
    Ren, Ling
    Zhang, Zhengqiu
    NONLINEAR ANALYSIS-MODELLING AND CONTROL, 2020, 25 (03): : 378 - 399
  • [26] Extreme events in a class of nonlinear Duffing-type oscillators with a parametric periodic force
    Dan Zhao
    Yongge Li
    Yong Xu
    Qi Liu
    Jürgen Kurths
    The European Physical Journal Plus, 137
  • [27] Coexisting chaotic attractors, their basin of attractions and synchronization of chaos in two coupled Duffing oscillators
    Department of Physics, St. Xavier's College, Tirunelveli-627002, Tamilnadu, India
    不详
    不详
    Phys Lett Sect A Gen At Solid State Phys, 4 (283-288):
  • [28] Coexisting chaotic attractors, their basin of attractions and synchronization of chaos in two coupled Duffing oscillators
    Raj, SP
    Rajasekar, S
    Murali, K
    PHYSICS LETTERS A, 1999, 264 (04) : 283 - 288
  • [29] Synchronization of cross-well chaos in coupled duffing oscillators
    Vincent, UE
    Njah, AN
    Akinlade, O
    Solarin, ART
    INTERNATIONAL JOURNAL OF MODERN PHYSICS B, 2005, 19 (20): : 3205 - 3216
  • [30] Generalized synchronization of coupled Duffing oscillators: an LMI based approach
    Xu, Shiyun
    Yang, Ying
    2010 AMERICAN CONTROL CONFERENCE, 2010, : 1761 - 1766