Recurrence analysis and synchronization of two resistively coupled Duffing-type oscillators

被引:0
|
作者
Saureesh Das
Rashmi Bhardwaj
机构
[1] Guru Gobind Singh Indraprastha University,University School of Basic and Applied Sciences
来源
Nonlinear Dynamics | 2021年 / 104卷
关键词
Recurrence plot; Complex dynamics; Duffing oscillator; Dynamical transitions; Chaos synchronization;
D O I
暂无
中图分类号
学科分类号
摘要
In this work, we study the complex dynamics and synchronization of two coupled Duffing-type circuits within the framework of recurrence quantification analysis (RQA). For the case of a Duffing oscillator driven by a sinusoidal voltage source, the behavior of various RQA parameters has been shown to reveal complex chaotic transitions taking place in its oscillatory behavior as the amplitude of forcing term is varied. The problem of synchronization of two identical Duffing oscillators coupled together resistively is further investigated using RQA. The simulated recurrence plot (RP) and plot for the τ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\tau $$\end{document}-recurrence/recurrence probability, p(τ)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$p(\tau )$$\end{document}, have been used extensively over different control parameter regime to understand the dynamical complexity including chaos synchronization for both one-way and two-way coupled Duffing-type oscillators. The critical parameter beyond which chaos synchronization occurs in such systems is determined.
引用
收藏
页码:2127 / 2144
页数:17
相关论文
共 50 条
  • [1] Recurrence analysis and synchronization of two resistively coupled Duffing-type oscillators
    Das, Saureesh
    Bhardwaj, Rashmi
    NONLINEAR DYNAMICS, 2021, 104 (03) : 2127 - 2144
  • [2] Dynamics of two resistively coupled Duffing-type electrical oscillators
    Kyprianidis, I. M.
    Volos, Ch.
    Stouboulos, I. N.
    Hadjidemetriou, J.
    INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 2006, 16 (06): : 1765 - 1775
  • [3] Synchronization of coupled Duffing-type oscillator dynamical networks
    Wang, Zhengxin
    Cao, Jinde
    Duan, Zhisheng
    Liu, Xiaoyang
    NEUROCOMPUTING, 2014, 136 : 162 - 169
  • [4] Synchronization of two resistively coupled nonautonomous and hyperchaotic oscillators
    Kyprianidis, IM
    Stouboulos, IN
    CHAOS SOLITONS & FRACTALS, 2003, 17 (2-3) : 317 - 325
  • [5] Chaos synchronization in two coupled Duffing oscillators
    Fang, JS
    Fang, Z
    Liu, XJ
    Rong, MS
    CHINESE PHYSICS LETTERS, 2001, 18 (11) : 1438 - 1441
  • [6] Analysis of the Effect of Random Noise on Synchronization in a System of Two Coupled Duffing Oscillators
    Ivanov A.A.
    Journal of Applied and Industrial Mathematics, 2019, 13 (01) : 65 - 75
  • [7] ANTI-PHASE AND INVERSE π-LAG SYNCHRONIZATION IN COUPLED DUFFING-TYPE CIRCUITS
    Volos, Christos K.
    Kyprianidis, Ioannis M.
    Stouboulos, Ioannis N.
    INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 2011, 21 (08): : 2357 - 2368
  • [8] Heart Rhythm Analysis Using Nonlinear Oscillators with Duffing-Type Connections
    Fonkou, Rodrigue F.
    Savi, Marcelo A.
    FRACTAL AND FRACTIONAL, 2023, 7 (08)
  • [9] Duffing-Type Oscillators with Amplitude-Independent Period
    Kovacic, Ivana N.
    Rand, Richard H.
    APPLIED NON-LINEAR DYNAMICAL SYSTEMS, 2014, 93 : 1 - 10
  • [10] Synchronization phenomena in resistively coupled oscillators with different frequencies
    Tokushima Univ, Tokushima-shi, Japan
    IEICE Trans Fund Electron Commun Comput Sci, 10 (1575-1580):