Forecasting the Daily 10.7 cm Solar Radio Flux Using an Autoregressive Model

被引:0
|
作者
Zhanle Du
机构
[1] Chinese Academy of Sciences,Key Laboratory of Solar Activity, National Astronomical Observatories
来源
Solar Physics | 2020年 / 295卷
关键词
Radio emission; Autoregression model; Solar cycle; Flares; Active regions; Earth’s atmosphere;
D O I
暂无
中图分类号
学科分类号
摘要
As an important proxy of the solar extreme ultraviolet radiation from the upper chromosphere and lower corona, the 10.7 cm solar radio flux (F10.7) has a wide range of applications in models of the thermosphere and ionosphere. Forecasting F10.7 has already become a routine business in space weather services. In this study, we analyzed the predictive power of autoregressive (AR) models with orders p=15\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$p=15$\end{document} – 1005, a training sample length L=22\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$L=22$\end{document} years, and a running time window w=50\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$w = 50$\end{document} days on the daily F10.7, during the last two solar cycles (Solar Cycles 23 and 24) at the forecast steps n=1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$n=1$\end{document} – 81 days. The main conclusions are as follows. (i) The mean forecast error (δ‾\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\overline{\delta }$\end{document}) at the n\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$n$\end{document}th day or over N\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$N$\end{document} days is minimum at an optimal order po\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$p_{\mathrm{o}}$\end{document}, which tends to increase as n\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$n$\end{document} or N\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$N$\end{document} increases. (ii) δ‾\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\overline{\delta }$\end{document} is positively related to both n\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$n$\end{document} and F10.7. The large error during the maximum period is the result of the large daily variation in F10.7, mainly due to the appearance and decay of active regions, especially the eruptions of solar flares. (iii) The solar cycle can be divided into six parts in the rising order of δ‾\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\overline{\delta }$\end{document}: (a) closing part of the declining phase, (b) initial rising phase, (c) middle declining phase, (iv) closing rising phase, (v) middle rising phase, and (f) initial declining phase. (iv) The AR model at po\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$p_{\mathrm{o}}$\end{document} is not inferior to other techniques. (v) po\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$p_{\mathrm{o}}$\end{document} is uncorrelated to the autocorrelation coefficient, and (vi) δ‾\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\overline{\delta }$\end{document} is minimum at a certain L\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$L$\end{document}.
引用
收藏
相关论文
共 50 条
  • [41] 10.7-CM SOLAR FLUX AND 26-MONTH OSCILLATION
    BELMONT, AD
    DARTT, DG
    ULSTAD, MS
    JOURNAL OF THE ATMOSPHERIC SCIENCES, 1966, 23 (03) : 314 - &
  • [42] SOLAR RADIO EMISSION AT 10.7-CM, 1947-1972
    COVINGTON, AE
    JOURNAL OF THE ROYAL ASTRONOMICAL SOCIETY OF CANADA, 1972, 66 (04) : 221 - +
  • [43] EVALUATION OF THE 10.7 CM SOLAR FLUX USING CONTINGENCY-TABLES AND VISUAL-DISPLAYS
    BROWN, TJ
    FLUECK, JA
    JOSELYN, J
    STEPHENSON, JJ
    11TH CONFERENCE ON PROBABILITY AND STATISTICS IN ATMOSPHERIC SCIENCES, 1989, : 315 - 317
  • [44] SOLAR RADIO EMISSION AT 10.7CM, 1947-1968
    COVINGTON, AE
    JOURNAL OF THE ROYAL ASTRONOMICAL SOCIETY OF CANADA, 1969, 63 (03) : 125 - +
  • [45] DECREASING SUNSPOT MAGNETIC FIELDS EXPLAIN UNIQUE 10.7 cm RADIO FLUX
    Livingston, W.
    Penn, M. J.
    Svalgaard, L.
    ASTROPHYSICAL JOURNAL LETTERS, 2012, 757 (01)
  • [46] Forecasting F10.7 with solar magnetic flux transport modeling
    Henney, C. J.
    Toussaint, W. A.
    White, S. M.
    Arge, C. N.
    SPACE WEATHER-THE INTERNATIONAL JOURNAL OF RESEARCH AND APPLICATIONS, 2012, 10
  • [47] Phase relationship between the relative sunspot number and solar 10.7 cm flux
    ZHANG XueFeng1
    2 Key Laboratory of Solar Activity
    3 Key Laboratory of Modern Astronomy and Astrophysics
    4 National Center for Space Weather
    5 School of Mathematics & Physics
    Science Bulletin, 2012, (17) : 2078 - 2082
  • [48] On the Relationships Between Sunspot Number and Solar Radio Flux at 10.7 Centimeters
    Okoh, Daniel
    Okoro, Eucharia
    SOLAR PHYSICS, 2020, 295 (01)
  • [49] Phase relationship between the relative sunspot number and solar 10.7 cm flux
    Zhang XueFeng
    Le GuiMing
    Zhang YanXia
    CHINESE SCIENCE BULLETIN, 2012, 57 (17): : 2078 - 2082
  • [50] CORRELATION OF ELF RESONANCES WITH COSMIC RAY COUNT AND 10.7 CM SOLAR FLUX
    KEEFE, TJ
    POLK, C
    TRANSACTIONS-AMERICAN GEOPHYSICAL UNION, 1970, 51 (04): : 399 - &