Forecasting the Daily 10.7 cm Solar Radio Flux Using an Autoregressive Model

被引:0
|
作者
Zhanle Du
机构
[1] Chinese Academy of Sciences,Key Laboratory of Solar Activity, National Astronomical Observatories
来源
Solar Physics | 2020年 / 295卷
关键词
Radio emission; Autoregression model; Solar cycle; Flares; Active regions; Earth’s atmosphere;
D O I
暂无
中图分类号
学科分类号
摘要
As an important proxy of the solar extreme ultraviolet radiation from the upper chromosphere and lower corona, the 10.7 cm solar radio flux (F10.7) has a wide range of applications in models of the thermosphere and ionosphere. Forecasting F10.7 has already become a routine business in space weather services. In this study, we analyzed the predictive power of autoregressive (AR) models with orders p=15\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$p=15$\end{document} – 1005, a training sample length L=22\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$L=22$\end{document} years, and a running time window w=50\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$w = 50$\end{document} days on the daily F10.7, during the last two solar cycles (Solar Cycles 23 and 24) at the forecast steps n=1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$n=1$\end{document} – 81 days. The main conclusions are as follows. (i) The mean forecast error (δ‾\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\overline{\delta }$\end{document}) at the n\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$n$\end{document}th day or over N\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$N$\end{document} days is minimum at an optimal order po\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$p_{\mathrm{o}}$\end{document}, which tends to increase as n\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$n$\end{document} or N\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$N$\end{document} increases. (ii) δ‾\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\overline{\delta }$\end{document} is positively related to both n\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$n$\end{document} and F10.7. The large error during the maximum period is the result of the large daily variation in F10.7, mainly due to the appearance and decay of active regions, especially the eruptions of solar flares. (iii) The solar cycle can be divided into six parts in the rising order of δ‾\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\overline{\delta }$\end{document}: (a) closing part of the declining phase, (b) initial rising phase, (c) middle declining phase, (iv) closing rising phase, (v) middle rising phase, and (f) initial declining phase. (iv) The AR model at po\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$p_{\mathrm{o}}$\end{document} is not inferior to other techniques. (v) po\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$p_{\mathrm{o}}$\end{document} is uncorrelated to the autocorrelation coefficient, and (vi) δ‾\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\overline{\delta }$\end{document} is minimum at a certain L\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$L$\end{document}.
引用
收藏
相关论文
共 50 条
  • [31] RELATIONSHIP BETWEEN OTTAWA 10.7 CM SOLAR RADIO NOISE FLUX AND ZURICH SUNSPOT NUMBER
    STEWART, FG
    TELECOMMUNICATION JOURNAL, 1972, 39 (03): : 159 - &
  • [32] COMPARISON OF NON-FLARE SOLAR SOFT-X-RAY FLUX WITH 10.7-CM RADIO FLUX
    DONNELLY, RF
    JOURNAL OF GEOPHYSICAL RESEARCH-SPACE PHYSICS, 1982, 87 (NA8): : 6331 - 6334
  • [33] EFFECTS OF SOLAR 10.7 CM RADIO FLUX AND SOLAR MAGNETIC-FIELD ON LOW-FREQUENCY SIGNAL PROPAGATION
    DE, BK
    SARKAR, SK
    INDIAN JOURNAL OF RADIO & SPACE PHYSICS, 1994, 23 (03): : 213 - 216
  • [34] The 10.7-cm radio flux multistep forecasting based on empirical mode decomposition and back propagation neural network
    Luo, Junqi
    Zhu, Hongbing
    Jiang, Yu
    Yang, Jianzhong
    Huang, Yu
    IEEJ TRANSACTIONS ON ELECTRICAL AND ELECTRONIC ENGINEERING, 2020, 15 (04) : 584 - 592
  • [35] Multi-technique Analysis of the Solar 10.7 cm Radio Flux Time-Series in Relation to Predictability
    Ghosh, Oindrilla
    Ghosh, Tanushree
    Chatterjee, T. N.
    SOLAR PHYSICS, 2014, 289 (06) : 2297 - 2315
  • [36] The effect of 10.7 cm solar flux on the monsoon rainfall over India
    Midya, S. K.
    Goswami, S.
    Sengupta, K.
    JOURNAL OF INDIAN GEOPHYSICAL UNION, 2016, 20 (06): : 558 - 565
  • [37] CORONAL SOURCES OF THE SOLAR F10.7 RADIO FLUX
    Schonfeld, S. J.
    White, S. M.
    Henney, C. J.
    Arge, C. N.
    McAteer, R. T. J.
    ASTROPHYSICAL JOURNAL, 2015, 808 (01):
  • [38] DEPENDENCE OF IONOSPHERIC ABSORPTION AT UDAIPUR ON 10.7-CM SOLAR FLUX
    LACHARYA, BL
    VIJAYVERGIA, SK
    RAI, RK
    INDIAN JOURNAL OF RADIO & SPACE PHYSICS, 1984, 13 (02): : 69 - 70
  • [39] Multi-technique Analysis of the Solar 10.7 cm Radio Flux Time-Series in Relation to Predictability
    Oindrilla Ghosh
    Tanushree Ghosh
    T. N. Chatterjee
    Solar Physics, 2014, 289 : 2297 - 2315
  • [40] EFFECT OF EARTHS ORBITAL ECCENTRICITY ON INCIDENT SOLAR FLUX AT 10.7 CM
    DASGUPTA, MK
    BASU, D
    JOURNAL OF ATMOSPHERIC AND TERRESTRIAL PHYSICS, 1964, 26 (01): : 135 - &