Forecasting the Daily 10.7 cm Solar Radio Flux Using an Autoregressive Model

被引:0
|
作者
Zhanle Du
机构
[1] Chinese Academy of Sciences,Key Laboratory of Solar Activity, National Astronomical Observatories
来源
Solar Physics | 2020年 / 295卷
关键词
Radio emission; Autoregression model; Solar cycle; Flares; Active regions; Earth’s atmosphere;
D O I
暂无
中图分类号
学科分类号
摘要
As an important proxy of the solar extreme ultraviolet radiation from the upper chromosphere and lower corona, the 10.7 cm solar radio flux (F10.7) has a wide range of applications in models of the thermosphere and ionosphere. Forecasting F10.7 has already become a routine business in space weather services. In this study, we analyzed the predictive power of autoregressive (AR) models with orders p=15\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$p=15$\end{document} – 1005, a training sample length L=22\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$L=22$\end{document} years, and a running time window w=50\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$w = 50$\end{document} days on the daily F10.7, during the last two solar cycles (Solar Cycles 23 and 24) at the forecast steps n=1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$n=1$\end{document} – 81 days. The main conclusions are as follows. (i) The mean forecast error (δ‾\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\overline{\delta }$\end{document}) at the n\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$n$\end{document}th day or over N\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$N$\end{document} days is minimum at an optimal order po\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$p_{\mathrm{o}}$\end{document}, which tends to increase as n\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$n$\end{document} or N\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$N$\end{document} increases. (ii) δ‾\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\overline{\delta }$\end{document} is positively related to both n\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$n$\end{document} and F10.7. The large error during the maximum period is the result of the large daily variation in F10.7, mainly due to the appearance and decay of active regions, especially the eruptions of solar flares. (iii) The solar cycle can be divided into six parts in the rising order of δ‾\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\overline{\delta }$\end{document}: (a) closing part of the declining phase, (b) initial rising phase, (c) middle declining phase, (iv) closing rising phase, (v) middle rising phase, and (f) initial declining phase. (iv) The AR model at po\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$p_{\mathrm{o}}$\end{document} is not inferior to other techniques. (v) po\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$p_{\mathrm{o}}$\end{document} is uncorrelated to the autocorrelation coefficient, and (vi) δ‾\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\overline{\delta }$\end{document} is minimum at a certain L\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$L$\end{document}.
引用
收藏
相关论文
共 50 条
  • [21] DISCUSSION OF 10.7-CM SOLAR RADIO FLUX MEASUREMENTS AND AN ESTIMATION OF THE ACCURACY OF OBSERVATIONS
    MEDD, WJ
    COVINGTON, AE
    PROCEEDINGS OF THE INSTITUTE OF RADIO ENGINEERS, 1958, 46 (01): : 112 - 118
  • [22] Deep Learning LSTM-based approaches for 10.7 cm solar radio flux forecasting up to 45-days
    Jerse, G.
    Marcucci, A.
    ASTRONOMY AND COMPUTING, 2024, 46
  • [23] Historical Dataset Reconstruction and a Prediction Method of Solar 10.7cm Radio Flux
    Juan Zhao~1 Yan-Ben Han~2 1 Department of Astronomy
    2 National Astronomical Observatories
    Research in Astronomy and Astrophysics, 2008, (04) : 472 - 476
  • [24] INDEX OF SOLAR RADIO BURST ACTIVITY AT 10.7 CM
    BASU, D
    NATURE, 1968, 219 (5154) : 597 - &
  • [26] Machine Learning Approaches for Predicting the 10.7 cm Radio Flux from Solar Magnetogram Data
    Valdes, Julio J.
    Nikolic, Ljubomir
    Tapping, Kenneth
    2019 INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORKS (IJCNN), 2019,
  • [27] BoxCox multi-output linear regression for 10.7 cm solar radio flux prediction
    Rui-Fei Cui
    Ya-Guang Zhu
    Huan Zhang
    Ri-Wei Zhang
    Hong-Yu Zhao
    Zheng-Lian Li
    Research in Astronomy and Astrophysics, 2021, 21 (04) : 149 - 158
  • [28] Eye on the Ionosphere: The Correlation between Solar 10.7 cm Radio Flux and Ionospheric Range Delay
    Doherty, Patricia H.
    Klobuchar, John A.
    Kunches, Joseph M.
    GPS SOLUTIONS, 2000, 3 (04) : 75 - 79
  • [29] Eye on the Ionosphere: The Correlation between Solar 10.7 cm Radio Flux and Ionospheric Range Delay
    Patricia H. Doherty
    John A. Klobuchar
    Joseph M. Kunches
    GPS Solutions, 2000, 3 : 75 - 79
  • [30] BoxCox multi-output linear regression for 10.7 cm solar radio flux prediction
    Cui, Rui-Fei
    Zhu, Ya-Guang
    Zhang, Huan
    Zhang, Ri-Wei
    Zhao, Hong-Yu
    Li, Zheng-Lian
    RESEARCH IN ASTRONOMY AND ASTROPHYSICS, 2021, 21 (04)