Forecasting the Daily 10.7 cm Solar Radio Flux Using an Autoregressive Model

被引:0
|
作者
Zhanle Du
机构
[1] Chinese Academy of Sciences,Key Laboratory of Solar Activity, National Astronomical Observatories
来源
Solar Physics | 2020年 / 295卷
关键词
Radio emission; Autoregression model; Solar cycle; Flares; Active regions; Earth’s atmosphere;
D O I
暂无
中图分类号
学科分类号
摘要
As an important proxy of the solar extreme ultraviolet radiation from the upper chromosphere and lower corona, the 10.7 cm solar radio flux (F10.7) has a wide range of applications in models of the thermosphere and ionosphere. Forecasting F10.7 has already become a routine business in space weather services. In this study, we analyzed the predictive power of autoregressive (AR) models with orders p=15\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$p=15$\end{document} – 1005, a training sample length L=22\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$L=22$\end{document} years, and a running time window w=50\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$w = 50$\end{document} days on the daily F10.7, during the last two solar cycles (Solar Cycles 23 and 24) at the forecast steps n=1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$n=1$\end{document} – 81 days. The main conclusions are as follows. (i) The mean forecast error (δ‾\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\overline{\delta }$\end{document}) at the n\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$n$\end{document}th day or over N\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$N$\end{document} days is minimum at an optimal order po\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$p_{\mathrm{o}}$\end{document}, which tends to increase as n\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$n$\end{document} or N\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$N$\end{document} increases. (ii) δ‾\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\overline{\delta }$\end{document} is positively related to both n\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$n$\end{document} and F10.7. The large error during the maximum period is the result of the large daily variation in F10.7, mainly due to the appearance and decay of active regions, especially the eruptions of solar flares. (iii) The solar cycle can be divided into six parts in the rising order of δ‾\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\overline{\delta }$\end{document}: (a) closing part of the declining phase, (b) initial rising phase, (c) middle declining phase, (iv) closing rising phase, (v) middle rising phase, and (f) initial declining phase. (iv) The AR model at po\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$p_{\mathrm{o}}$\end{document} is not inferior to other techniques. (v) po\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$p_{\mathrm{o}}$\end{document} is uncorrelated to the autocorrelation coefficient, and (vi) δ‾\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\overline{\delta }$\end{document} is minimum at a certain L\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$L$\end{document}.
引用
收藏
相关论文
共 50 条
  • [1] Forecasting the Daily 10.7 cm Solar Radio Flux Using an Autoregressive Model
    Du, Zhanle
    SOLAR PHYSICS, 2020, 295 (09)
  • [2] On the Signature of Chaotic Dynamics in 10.7 cm Daily Solar Radio Flux
    Ghosh, Oindrilla
    Chatterjee, T. N.
    SOLAR PHYSICS, 2015, 290 (11) : 3319 - 3330
  • [3] On the Signature of Chaotic Dynamics in 10.7 cm Daily Solar Radio Flux
    Oindrilla Ghosh
    T. N. Chatterjee
    Solar Physics, 2015, 290 : 3319 - 3330
  • [4] The 10.7 cm solar radio flux (F10.7)
    Tapping, K. F.
    SPACE WEATHER-THE INTERNATIONAL JOURNAL OF RESEARCH AND APPLICATIONS, 2013, 11 (07): : 394 - 406
  • [5] Extreme Value Theory Applied to the Daily Solar Radio Flux at 10.7 cm
    Acero, F. J.
    Vaquero, J. M.
    Gallego, M. C.
    Garcia, J. A.
    SOLAR PHYSICS, 2019, 294 (06)
  • [6] Extreme Value Theory Applied to the Daily Solar Radio Flux at 10.7 cm
    F. J. Acero
    J. M. Vaquero
    M. C. Gallego
    J. A. García
    Solar Physics, 2019, 294
  • [7] Multifractal Analysis of the 10.7cm daily Solar radio flux data
    Prasad, Amrita
    Roy, Soumya
    Panja, Subhash. C.
    Patra, Sankar Narayan
    PROCEEDINGS OF 2018 IEEE APPLIED SIGNAL PROCESSING CONFERENCE (ASPCON), 2018, : 224 - 228
  • [8] Forecasting the 10.7-cm Solar Radio Flux Using Deep CNN-LSTM Neural Networks
    Luo, Junqi
    Zhu, Liucun
    Zhang, Kunlun
    Zhao, Chenglong
    Liu, Zeqi
    PROCESSES, 2022, 10 (02)
  • [9] 10.7 CM-SOLAR RADIO FLUX AND IONOSPHERIC TEMPERATURES
    MAHAJAN, KK
    JOURNAL OF ATMOSPHERIC AND TERRESTRIAL PHYSICS, 1967, 29 (09): : 1153 - +
  • [10] Predicting the Daily 10.7-cm Solar Radio Flux Using the Long Short-Term Memory Method
    Zhang, Wanting
    Zhao, Xinhua
    Feng, Xueshang
    Liu, Cheng'ao
    Xiang, Nanbin
    Li, Zheng
    Lu, Wei
    UNIVERSE, 2022, 8 (01)