A compact finite difference method for solving a class of time fractional convection-subdiffusion equations

被引:0
|
作者
Yuan-Ming Wang
机构
[1] Shanghai Key Laboratory of Pure Mathematics and Mathematical Practice,Department of Mathematics
[2] East China Normal University,Scientific Computing Key Laboratory of Shanghai Universities
[3] Division of Computational Science,undefined
[4] E-Institute of Shanghai Universities,undefined
[5] Shanghai Normal University,undefined
来源
BIT Numerical Mathematics | 2015年 / 55卷
关键词
Fractional convection-subdiffusion equation; Variable coefficients; Compact finite difference method; Stability and convergence; Error estimate; 65M06; 65M12; 65M15; 35R11;
D O I
暂无
中图分类号
学科分类号
摘要
A high-order compact finite difference method is proposed for solving a class of time fractional convection-subdiffusion equations. The convection coefficient in the equation may be spatially variable, and the time fractional derivative is in the Caputo’s sense with the order α\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\alpha $$\end{document} (0<α<1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$0<\alpha <1$$\end{document}). After a transformation of the original equation, the spatial derivative is discretized by a fourth-order compact finite difference method and the time fractional derivative is approximated by a (2-α)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(2-\alpha )$$\end{document}-order implicit scheme. The local truncation error and the solvability of the method are discussed in detail. A rigorous theoretical analysis of the stability and convergence is carried out using the discrete energy method, and the optimal error estimates in the discrete H1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$H^{1}$$\end{document}, L2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$L^{2}$$\end{document} and L∞\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$L^{\infty }$$\end{document} norms are obtained. Applications using several model problems give numerical results that demonstrate the effectiveness and the accuracy of this new method.
引用
收藏
页码:1187 / 1217
页数:30
相关论文
共 50 条
  • [21] Finite Difference Method for Two-Dimensional Nonlinear Time-Fractional Subdiffusion Equation
    Changpin Li
    Qian Yi
    Fractional Calculus and Applied Analysis, 2018, 21 : 1046 - 1072
  • [22] Compact Difference Schemes for a Class of Space-time Fractional Differential Equations
    Feng, Qinghua
    ENGINEERING LETTERS, 2019, 27 (02) : 269 - 277
  • [23] Compact fourth-order finite difference method for solving differential equations
    Wilkinson, PB
    Fromhold, TM
    Tench, CR
    Taylor, RP
    Micolich, AP
    PHYSICAL REVIEW E, 2001, 64 (04):
  • [24] A high-order compact finite difference method and its extrapolation for fractional mobile/immobile convection–diffusion equations
    Yuan-Ming Wang
    Calcolo, 2017, 54 : 733 - 768
  • [25] The characteristic difference DDM for solving the time-fractional order convection–diffusion equations
    Zhongguo Zhou
    Ning Wang
    Hao Pan
    Yan Wang
    Computational and Applied Mathematics, 2023, 42
  • [26] A numerical method based on finite difference for solving fractional delay differential equations
    Moghaddam, Behrouz P.
    Mostaghim, Zeynab S.
    JOURNAL OF TAIBAH UNIVERSITY FOR SCIENCE, 2013, 7 (03): : 120 - 127
  • [27] Approximate inversion method for time-fractional subdiffusion equations
    Lu, Xin
    Pang, Hong-Kui
    Sun, Hai-Wei
    Vong, Seak-Weng
    NUMERICAL LINEAR ALGEBRA WITH APPLICATIONS, 2018, 25 (02)
  • [28] Wavelet-optimized compact finite difference method for convection-diffusion equations
    Mehra, Mani
    Patel, Kuldip Singh
    Shukla, Ankita
    INTERNATIONAL JOURNAL OF NONLINEAR SCIENCES AND NUMERICAL SIMULATION, 2021, 22 (3-4) : 353 - 372
  • [29] Convergence and stability of compact finite difference method for nonlinear time fractional reaction-diffusion equations with delay
    Li, Lili
    Zhou, Boya
    Chen, Xiaoli
    Wang, Zhiyong
    APPLIED MATHEMATICS AND COMPUTATION, 2018, 337 : 144 - 152
  • [30] A Class of Alternating Group Finite Difference Method For solving Convection-Diffusion Equation
    Zheng, Bin
    Feng, Qinghua
    PROCEEDINGS OF THE 15TH AMERICAN CONFERENCE ON APPLIED MATHEMATICS AND PROCEEDINGS OF THE INTERNATIONAL CONFERENCE ON COMPUTATIONAL AND INFORMATION SCIENCES 2009, VOLS I AND II, 2009, : 129 - +