Convergence and stability of compact finite difference method for nonlinear time fractional reaction-diffusion equations with delay

被引:41
|
作者
Li, Lili [1 ,2 ]
Zhou, Boya [1 ,2 ]
Chen, Xiaoli [1 ,2 ]
Wang, Zhiyong [3 ]
机构
[1] Huazhong Univ Sci & Technol, Sch Math & Stat, Wuhan 430074, Hubei, Peoples R China
[2] Huazhong Univ Sci & Technol, Hubei Key Lab Engn Modeling & Sci Comp, Wuhan 430074, Hubei, Peoples R China
[3] Univ Elect Sci & Technol China, Sch Math Sci, Chengdu 611731, Sichuan, Peoples R China
基金
中国国家自然科学基金;
关键词
Nonlinear time fractional reaction-diffusion equations with delay; Fractional Gronwall type inequality; Stability; Convergence; Linearized numerical scheme; SCHRODINGER-EQUATIONS; SUBDIFFUSION EQUATION; GRONWALL INEQUALITY; PARABOLIC EQUATIONS; ELEMENT-METHOD; ERROR ANALYSIS; SCHEME; SYSTEMS; FEMS;
D O I
10.1016/j.amc.2018.04.057
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This paper is concerned with numerical solutions of nonlinear time fractional reaction-diffusion equations with time delay. A linearized compact finite difference scheme is proposed to solve the equations. In terms of a new developed fractional Gronwall type inequality, convergence and stability of the proposed scheme are obtained. Numerical experiments are given to illustrate the theoretical results. (C) 2018 Elsevier Inc. All rights reserved.
引用
收藏
页码:144 / 152
页数:9
相关论文
共 50 条
  • [1] A note on compact finite difference method for reaction-diffusion equations with delay
    Li, Dongfang
    Zhang, Chengjian
    Wen, Jinming
    APPLIED MATHEMATICAL MODELLING, 2015, 39 (5-6) : 1749 - 1754
  • [2] Stable finite difference method for fractional reaction-diffusion equations by compact implicit integration factor methods
    Zhang, Rongpei
    Li, Mingjun
    Chen, Bo
    Zhang, Liwei
    ADVANCES IN DIFFERENCE EQUATIONS, 2021, 2021 (01)
  • [3] Finite difference reaction-diffusion equations with nonlinear diffusion coefficients
    Wang, JH
    Pao, CV
    NUMERISCHE MATHEMATIK, 2000, 85 (03) : 485 - 502
  • [4] Stability and convergence of radial basis function finite difference method for the numerical solution of the reaction-diffusion equations
    Golbabai, Ahmad
    Nikpour, Ahmad
    APPLIED MATHEMATICS AND COMPUTATION, 2015, 271 : 567 - 580
  • [5] Uniform convergence of compact and BDF methods for the space fractional semilinear delay reaction-diffusion equations
    Zhang, Qifeng
    Ren, Yunzhu
    Lin, Xiaoman
    Xu, Yinghong
    APPLIED MATHEMATICS AND COMPUTATION, 2019, 358 : 91 - 110
  • [6] CONVERGENCE AND STABILITY ANALYSIS OF AN EXPLICIT FINITE-DIFFERENCE METHOD FOR 2-DIMENSIONAL REACTION-DIFFUSION EQUATIONS
    LI, N
    STEINER, J
    TANG, SM
    JOURNAL OF THE AUSTRALIAN MATHEMATICAL SOCIETY SERIES B-APPLIED MATHEMATICS, 1994, 36 : 234 - 241
  • [7] Higher-order compact finite difference method for systems of reaction-diffusion equations
    Wang, Yuan-Ming
    Zhang, Hong-Bo
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2009, 233 (02) : 502 - 518
  • [8] Exact solutions of generalized nonlinear time-fractional reaction-diffusion equations with time delay
    Prakash, P.
    Choudhary, Sangita
    Daftardar-Gejji, Varsha
    EUROPEAN PHYSICAL JOURNAL PLUS, 2020, 135 (06):
  • [9] Finite difference/finite element method for a nonlinear time-fractional fourth-order reaction-diffusion problem
    Liu, Yang
    Du, Yanwei
    Li, Hong
    He, Siriguleng
    Gao, Wei
    COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2015, 70 (04) : 573 - 591
  • [10] NONSTANDARD FINITE DIFFERENCE METHOD FOR NONLINEAR RIESZ SPACE FRACTIONAL REACTION-DIFFUSION EQUATION
    Cai, Li
    Guo, Meifang
    Li, Yiqiang
    Ying, Wenjun
    Gao, Hao
    Luo, Xiaoyu
    INTERNATIONAL JOURNAL OF NUMERICAL ANALYSIS AND MODELING, 2019, 16 (06) : 925 - 938