Stability and convergence of radial basis function finite difference method for the numerical solution of the reaction-diffusion equations

被引:11
|
作者
Golbabai, Ahmad [1 ]
Nikpour, Ahmad [1 ]
机构
[1] Iran Univ Sci & Technol, Sch Math, Tehran, Iran
关键词
Radial basis function; Finite difference; Reaction-diffusion equation; Generalized multiquadric (GMQ); Optimal shape parameter; FITZHUGH-NAGUMO EQUATION; SHAPE PARAMETER; QUADRATURE; WAVE;
D O I
10.1016/j.amc.2015.09.034
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Stability, convergence and application of radial basis function finite difference (RBF-FD) scheme is studied for solving the reaction-diffusion equations (RDEs). We show that the explicit REF-ED method is stable, and stability condition depends on the shape parameter of related radial basis function.The generalized multiquadric (GMQ) is applied as radial basis function and weight coefficients are explicitly presented for equispaced node distribution. Also, two methods are presented to compute the optimal shape parameter. The combination of these methods with the GMQ-FD method will produce two efficient algorithms for numerical solution of RDEs: the variable GMQ-FD (VGMQ-FD) and the constant GMQ-FD (CGMQ-FD). We test the scheme on traveling wave and compare its accuracy with the conventional finite difference method (FDM). (C) 2015 Elsevier Inc. All rights reserved.
引用
收藏
页码:567 / 580
页数:14
相关论文
共 50 条
  • [1] A Radial Basis Function (RBF)-Finite Difference (FD) Method for Diffusion and Reaction-Diffusion Equations on Surfaces
    Shankar, Varun
    Wright, Grady B.
    Kirby, Robert M.
    Fogelson, Aaron L.
    JOURNAL OF SCIENTIFIC COMPUTING, 2015, 63 (03) : 745 - 768
  • [2] A RADIAL BASIS FUNCTION (RBF) COMPACT FINITE DIFFERENCE (FD) SCHEME FOR REACTION-DIFFUSION EQUATIONS ON SURFACES
    Lehto, Erik
    Shankar, Varun
    Wright, Grady B.
    SIAM JOURNAL ON SCIENTIFIC COMPUTING, 2017, 39 (05): : A2129 - A2151
  • [3] A Radial Basis Function (RBF)-Finite Difference (FD) Method for Diffusion and Reaction–Diffusion Equations on Surfaces
    Varun Shankar
    Grady B. Wright
    Robert M. Kirby
    Aaron L. Fogelson
    Journal of Scientific Computing, 2015, 63 : 745 - 768
  • [4] A radial basis function (RBF) finite difference method for the simulation of reaction-diffusion equations on stationary platelets within the augmented forcing method
    Shankar, Varun
    Wright, Grady B.
    Fogelson, Aaron L.
    Kirby, Robert M.
    INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN FLUIDS, 2014, 75 (01) : 1 - 22
  • [5] Numerical Solution of Reaction-Diffusion Equations with Convergence Analysis
    Heidari, M.
    Ghovatmand, M.
    Skandari, M. H. Noori
    Baleanu, D.
    JOURNAL OF NONLINEAR MATHEMATICAL PHYSICS, 2023, 30 (02) : 384 - 399
  • [6] Numerical method based on radial basis functions for solving reaction-diffusion equations
    Su, Ling-De
    Jiang, Zi-Wu
    Jiang, Tong-Song
    2016 IEEE INFORMATION TECHNOLOGY, NETWORKING, ELECTRONIC AND AUTOMATION CONTROL CONFERENCE (ITNEC), 2016, : 893 - 896
  • [7] Convergence and stability of compact finite difference method for nonlinear time fractional reaction-diffusion equations with delay
    Li, Lili
    Zhou, Boya
    Chen, Xiaoli
    Wang, Zhiyong
    APPLIED MATHEMATICS AND COMPUTATION, 2018, 337 : 144 - 152
  • [8] CONVERGENCE AND STABILITY ANALYSIS OF AN EXPLICIT FINITE-DIFFERENCE METHOD FOR 2-DIMENSIONAL REACTION-DIFFUSION EQUATIONS
    LI, N
    STEINER, J
    TANG, SM
    JOURNAL OF THE AUSTRALIAN MATHEMATICAL SOCIETY SERIES B-APPLIED MATHEMATICS, 1994, 36 : 234 - 241
  • [9] STABILITY AND CONVERGENCE OF FINITE-DIFFERENCE METHODS FOR SYSTEMS OF NON-LINEAR REACTION-DIFFUSION EQUATIONS
    HOFF, D
    SIAM JOURNAL ON NUMERICAL ANALYSIS, 1978, 15 (06) : 1161 - 1177
  • [10] A note on compact finite difference method for reaction-diffusion equations with delay
    Li, Dongfang
    Zhang, Chengjian
    Wen, Jinming
    APPLIED MATHEMATICAL MODELLING, 2015, 39 (5-6) : 1749 - 1754