Convergence and stability of compact finite difference method for nonlinear time fractional reaction-diffusion equations with delay

被引:41
|
作者
Li, Lili [1 ,2 ]
Zhou, Boya [1 ,2 ]
Chen, Xiaoli [1 ,2 ]
Wang, Zhiyong [3 ]
机构
[1] Huazhong Univ Sci & Technol, Sch Math & Stat, Wuhan 430074, Hubei, Peoples R China
[2] Huazhong Univ Sci & Technol, Hubei Key Lab Engn Modeling & Sci Comp, Wuhan 430074, Hubei, Peoples R China
[3] Univ Elect Sci & Technol China, Sch Math Sci, Chengdu 611731, Sichuan, Peoples R China
基金
中国国家自然科学基金;
关键词
Nonlinear time fractional reaction-diffusion equations with delay; Fractional Gronwall type inequality; Stability; Convergence; Linearized numerical scheme; SCHRODINGER-EQUATIONS; SUBDIFFUSION EQUATION; GRONWALL INEQUALITY; PARABOLIC EQUATIONS; ELEMENT-METHOD; ERROR ANALYSIS; SCHEME; SYSTEMS; FEMS;
D O I
10.1016/j.amc.2018.04.057
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This paper is concerned with numerical solutions of nonlinear time fractional reaction-diffusion equations with time delay. A linearized compact finite difference scheme is proposed to solve the equations. In terms of a new developed fractional Gronwall type inequality, convergence and stability of the proposed scheme are obtained. Numerical experiments are given to illustrate the theoretical results. (C) 2018 Elsevier Inc. All rights reserved.
引用
收藏
页码:144 / 152
页数:9
相关论文
共 50 条
  • [41] Convergence and stability of the finite difference scheme for nonlinear parabolic systems with time delay
    Qiming He
    Lishan Kang
    D.J. Evans
    Numerical Algorithms, 1997, 16 : 129 - 153
  • [42] Adaptive space-time finite element method for time fractional-order reaction-diffusion equations
    Li, Man
    Ge, Liang
    JOURNAL OF APPLIED MATHEMATICS AND COMPUTING, 2025,
  • [43] On the numerical solutions of coupled nonlinear time-fractional reaction-diffusion equations
    Jannelli, Alessandra
    Speciale, Maria Paola
    AIMS MATHEMATICS, 2021, 6 (08): : 9109 - 9125
  • [44] Efficient time discretization scheme for nonlinear space fractional reaction-diffusion equations
    Iyiola, O. S.
    Asante-Asamani, E. O.
    Furati, K. M.
    Khaliq, A. Q. M.
    Wade, B. A.
    INTERNATIONAL JOURNAL OF COMPUTER MATHEMATICS, 2018, 95 (6-7) : 1274 - 1291
  • [45] Finite-time stability of a class of nonlinear fractional delay difference systems
    Du, Feifei
    Jia, Baoguo
    APPLIED MATHEMATICS LETTERS, 2019, 98 (233-239) : 233 - 239
  • [46] Finite-time stability of impulsive reaction-diffusion systems with and without time delay
    Wu, Kai-Ning
    Na, Ming-Ye
    Wang, Liming
    Ding, Xiaohua
    Wu, Boying
    APPLIED MATHEMATICS AND COMPUTATION, 2019, 363
  • [47] A Mixed Finite Volume Element Method for Time-Fractional Reaction-Diffusion Equations on Triangular Grids
    Zhao, Jie
    Li, Hong
    Fang, Zhichao
    Liu, Yang
    MATHEMATICS, 2019, 7 (07)
  • [48] A Mixed Finite Element Method for the Multi-Term Time-Fractional Reaction-Diffusion Equations
    Zhao, Jie
    Dong, Shubin
    Fang, Zhichao
    FRACTAL AND FRACTIONAL, 2024, 8 (01)
  • [49] Discrete monotone method for space-fractional nonlinear reaction-diffusion equations
    Flores, Salvador
    Macias-Diaz, Jorge E.
    Hendy, Ahmed S.
    ADVANCES IN DIFFERENCE EQUATIONS, 2019,
  • [50] Blowup and MLUH stability of time-space fractional reaction-diffusion equations
    Gao, Peng
    Chen, Pengyu
    ELECTRONIC RESEARCH ARCHIVE, 2022, 30 (09): : 3351 - 3361