A compact finite difference method for solving a class of time fractional convection-subdiffusion equations

被引:0
|
作者
Yuan-Ming Wang
机构
[1] Shanghai Key Laboratory of Pure Mathematics and Mathematical Practice,Department of Mathematics
[2] East China Normal University,Scientific Computing Key Laboratory of Shanghai Universities
[3] Division of Computational Science,undefined
[4] E-Institute of Shanghai Universities,undefined
[5] Shanghai Normal University,undefined
来源
BIT Numerical Mathematics | 2015年 / 55卷
关键词
Fractional convection-subdiffusion equation; Variable coefficients; Compact finite difference method; Stability and convergence; Error estimate; 65M06; 65M12; 65M15; 35R11;
D O I
暂无
中图分类号
学科分类号
摘要
A high-order compact finite difference method is proposed for solving a class of time fractional convection-subdiffusion equations. The convection coefficient in the equation may be spatially variable, and the time fractional derivative is in the Caputo’s sense with the order α\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\alpha $$\end{document} (0<α<1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$0<\alpha <1$$\end{document}). After a transformation of the original equation, the spatial derivative is discretized by a fourth-order compact finite difference method and the time fractional derivative is approximated by a (2-α)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(2-\alpha )$$\end{document}-order implicit scheme. The local truncation error and the solvability of the method are discussed in detail. A rigorous theoretical analysis of the stability and convergence is carried out using the discrete energy method, and the optimal error estimates in the discrete H1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$H^{1}$$\end{document}, L2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$L^{2}$$\end{document} and L∞\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$L^{\infty }$$\end{document} norms are obtained. Applications using several model problems give numerical results that demonstrate the effectiveness and the accuracy of this new method.
引用
收藏
页码:1187 / 1217
页数:30
相关论文
共 50 条
  • [41] Compact finite difference method to numerically solving a stochastic fractional advection-diffusion equation
    N. H. Sweilam
    D. M. El-Sakout
    M. M. Muttardi
    Advances in Difference Equations, 2020
  • [42] Compact finite difference method to numerically solving a stochastic fractional advection-diffusion equation
    Sweilam, N. H.
    El-Sakout, D. M.
    Muttardi, M. M.
    ADVANCES IN DIFFERENCE EQUATIONS, 2020, 2020 (01)
  • [43] Compact finite difference method for the fractional diffusion equation
    Cui, Mingrong
    JOURNAL OF COMPUTATIONAL PHYSICS, 2009, 228 (20) : 7792 - 7804
  • [44] A compact integrated RBF method for time fractional convection-diffusion-reaction equations
    Qiao, Yuanyang
    Zhao, Jianping
    Feng, Xinlong
    COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2019, 77 (09) : 2263 - 2278
  • [45] Improved Meshless Finite Integration Method for Solving Time Fractional Diffusion Equations
    Liu, Pengyuan
    Lei, Min
    Yue, Junhong
    Niu, Ruiping
    INTERNATIONAL JOURNAL OF COMPUTATIONAL METHODS, 2024, 21 (10)
  • [46] Generalized finite difference method for a class of multidimensional space-fractional diffusion equations
    Hong Guang Sun
    Zhaoyang Wang
    Jiayi Nie
    Yong Zhang
    Rui Xiao
    Computational Mechanics, 2021, 67 : 17 - 32
  • [47] Generalized finite difference method for a class of multidimensional space-fractional diffusion equations
    Sun, Hong Guang
    Wang, Zhaoyang
    Nie, Jiayi
    Zhang, Yong
    Xiao, Rui
    COMPUTATIONAL MECHANICS, 2021, 67 (01) : 17 - 32
  • [48] Estimation of parameters in fractional subdiffusion equations by the time integral characteristics method
    Lukashchuk, S. Yu.
    COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2011, 62 (03) : 834 - 844
  • [49] A high order compact finite difference scheme for time fractional Fokker-Planck equations
    Vong, Seakweng
    Wang, Zhibo
    APPLIED MATHEMATICS LETTERS, 2015, 43 : 38 - 43
  • [50] The finite difference/finite volume method for solving the fractional diffusion equation
    Zhang, Tie
    Guo, Qingxin
    JOURNAL OF COMPUTATIONAL PHYSICS, 2018, 375 : 120 - 134