Lattice Size and Generalized Basis Reduction in Dimension Three

被引:0
|
作者
Anthony Harrison
Jenya Soprunova
机构
[1] Kent State University,Department of Mathematics
来源
关键词
Lattice size; Successive minima; Generalized basis reduction; 52B20; 11H06; 52C05; 52C07;
D O I
暂无
中图分类号
学科分类号
摘要
The lattice size of a lattice polytope P was defined and studied by Schicho, and Castryck and Cools. They provided an “onion skins” algorithm for computing the lattice size of a lattice polygon P in R2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathbb R^2$$\end{document} based on passing successively to the convex hull of the interior lattice points of P. We explain the connection of the lattice size to the successive minima of K=(P+(-P))∗\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$K=(P+(-P))^*$$\end{document} and to the lattice reduction with respect to the general norm that corresponds to K. It follows that the generalized Gauss algorithm of Kaib and Schnorr (which is faster than the “onion skins” algorithm) computes the lattice size of any convex body in R2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathbb R^2$$\end{document}. We extend the work of Kaib and Schnorr to dimension three, providing a fast algorithm for lattice reduction with respect to the general norm defined by a convex origin-symmetric body K⊂R3\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$K\subset \mathbb R^3$$\end{document}. We also explain how to recover the successive minima of K and the lattice size of P from the obtained reduced basis and therefore provide a fast algorithm for computing the lattice size of any convex body P⊂R3\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$P\subset \mathbb R^3$$\end{document}.
引用
收藏
页码:287 / 310
页数:23
相关论文
共 50 条
  • [41] Lattice Basis Delegation in Fixed Dimension and Shorter-Ciphertext Hierarchical IBE
    Agrawal, Shweta
    Boneh, Dan
    Boyen, Xavier
    ADVANCES IN CRYPTOLOGY - CRYPTO 2010, 2010, 6223 : 98 - +
  • [42] Energy scattering of a generalized Davey–Stewartson system in three dimension
    Jing Lu
    Xing Dong Tang
    Acta Mathematica Sinica, English Series, 2017, 33 : 1206 - 1224
  • [43] Energy Scattering of a Generalized Davey–Stewartson System in Three Dimension
    Jing LU
    Xing Dong TANG
    Acta Mathematica Sinica,English Series, 2017, 33 (09) : 1206 - 1224
  • [44] Energy Scattering of a Generalized Davey–Stewartson System in Three Dimension
    Jing LU
    Xing Dong TANG
    ActaMathematicaSinica, 2017, 33 (09) : 1206 - 1224
  • [45] On generalized Howell designs with block size three
    Abel, R. Julian R.
    Bailey, Robert F.
    Burgess, Andrea C.
    Danziger, Peter
    Mendelsohn, Eric
    DESIGNS CODES AND CRYPTOGRAPHY, 2016, 81 (02) : 365 - 391
  • [46] On generalized Howell designs with block size three
    R. Julian R. Abel
    Robert F. Bailey
    Andrea C. Burgess
    Peter Danziger
    Eric Mendelsohn
    Designs, Codes and Cryptography, 2016, 81 : 365 - 391
  • [47] Methodological Aspects of Fractal Dimension Estimation on the Basis of Particle Size Distribution
    Bieganowski, Andrzej
    Chojecki, Tymoteusz
    Ryzak, Magdalena
    Sochan, Agata
    Lamorski, Krzysztof
    VADOSE ZONE JOURNAL, 2013, 12 (01):
  • [48] Development and analysis of massive parallelization of a lattice basis reduction algorithm
    Nariaki Tateiwa
    Yuji Shinano
    Masaya Yasuda
    Shizuo Kaji
    Keiichiro Yamamura
    Katsuki Fujisawa
    Japan Journal of Industrial and Applied Mathematics, 2024, 41 : 13 - 56
  • [49] A Hybrid Lattice Basis Reduction and Quantum Search Attack on LWE
    Goepfert, Florian
    van Vredendaal, Christine
    Wunderer, Thomas
    POST-QUANTUM CRYPTOGRAPHY, PQCRYPTO 2017, 2017, 10346 : 184 - 202
  • [50] Solving norm form equations via lattice basis reduction
    Bennett, MA
    ROCKY MOUNTAIN JOURNAL OF MATHEMATICS, 1996, 26 (03) : 815 - 837