Lattice Size and Generalized Basis Reduction in Dimension Three

被引:0
|
作者
Anthony Harrison
Jenya Soprunova
机构
[1] Kent State University,Department of Mathematics
来源
关键词
Lattice size; Successive minima; Generalized basis reduction; 52B20; 11H06; 52C05; 52C07;
D O I
暂无
中图分类号
学科分类号
摘要
The lattice size of a lattice polytope P was defined and studied by Schicho, and Castryck and Cools. They provided an “onion skins” algorithm for computing the lattice size of a lattice polygon P in R2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathbb R^2$$\end{document} based on passing successively to the convex hull of the interior lattice points of P. We explain the connection of the lattice size to the successive minima of K=(P+(-P))∗\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$K=(P+(-P))^*$$\end{document} and to the lattice reduction with respect to the general norm that corresponds to K. It follows that the generalized Gauss algorithm of Kaib and Schnorr (which is faster than the “onion skins” algorithm) computes the lattice size of any convex body in R2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathbb R^2$$\end{document}. We extend the work of Kaib and Schnorr to dimension three, providing a fast algorithm for lattice reduction with respect to the general norm defined by a convex origin-symmetric body K⊂R3\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$K\subset \mathbb R^3$$\end{document}. We also explain how to recover the successive minima of K and the lattice size of P from the obtained reduced basis and therefore provide a fast algorithm for computing the lattice size of any convex body P⊂R3\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$P\subset \mathbb R^3$$\end{document}.
引用
收藏
页码:287 / 310
页数:23
相关论文
共 50 条
  • [31] Complexity analysis of a parallel lattice basis reduction algorithm
    Heckler, C
    Thiele, L
    SIAM JOURNAL ON COMPUTING, 1998, 27 (05) : 1295 - 1302
  • [32] Low-Dimensional Lattice Basis Reduction Revisited
    Nguyen, Phong Q.
    Stehle, Damien
    ACM TRANSACTIONS ON ALGORITHMS, 2009, 5 (04)
  • [33] Lattice basis reduction, Jacobi sums and hyperelliptic cryptosystems
    Buhler, J
    Koblitz, N
    BULLETIN OF THE AUSTRALIAN MATHEMATICAL SOCIETY, 1998, 58 (01) : 147 - 154
  • [34] Low-dimensional lattice basis reduction revisited
    Nguyen, PQ
    Stehlé, D
    ALGORITHMIC NUMBER THEORY, PROCEEDINGS, 2004, 3076 : 338 - 357
  • [35] Recent Progress in Linear Algebra and Lattice Basis Reduction
    Villard, Gilles
    ISSAC 2011: PROCEEDINGS OF THE 36TH INTERNATIONAL SYMPOSIUM ON SYMBOLIC AND ALGEBRAIC COMPUTATION, 2011, : 3 - 4
  • [36] High dimension lattice vector quantizer design for generalized Gaussian distributions
    Fonteles, Leonardo Hidd
    Antonini, Marc
    2007 IEEE INTERNATIONAL CONFERENCE ON IMAGE PROCESSING, VOLS 1-7, 2007, : 1881 - +
  • [37] SERRE WEIGHTS AND BREUIL'S LATTICE CONJECTURE IN DIMENSION THREE
    Le, Daniel
    Le Hung, Bao, V
    Levin, Brandon
    Morra, Stefano
    FORUM OF MATHEMATICS PI, 2020, 8
  • [38] MULTICLASS LINEAR DIMENSION REDUCTION VIA A GENERALIZED CHERNOFF BOUND
    Thangavelu, Madan
    Raich, Raviv
    2008 IEEE WORKSHOP ON MACHINE LEARNING FOR SIGNAL PROCESSING, 2008, : 350 - 355
  • [39] Dimension reduction, generalized deformable models and the development of ocularity and orientation
    Yuille, AL
    Kolodny, JA
    Lee, CW
    NEURAL NETWORKS, 1996, 9 (02) : 309 - 319
  • [40] BOUNDS FOR THE REDUCTION NUMBER OF PRIMARY IDEAL IN DIMENSION THREE
    Mandal, Mousumi
    Saloni, Kumari
    PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2023, 151 (10) : 4127 - 4141