Lattice Size and Generalized Basis Reduction in Dimension Three

被引:0
|
作者
Anthony Harrison
Jenya Soprunova
机构
[1] Kent State University,Department of Mathematics
来源
关键词
Lattice size; Successive minima; Generalized basis reduction; 52B20; 11H06; 52C05; 52C07;
D O I
暂无
中图分类号
学科分类号
摘要
The lattice size of a lattice polytope P was defined and studied by Schicho, and Castryck and Cools. They provided an “onion skins” algorithm for computing the lattice size of a lattice polygon P in R2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathbb R^2$$\end{document} based on passing successively to the convex hull of the interior lattice points of P. We explain the connection of the lattice size to the successive minima of K=(P+(-P))∗\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$K=(P+(-P))^*$$\end{document} and to the lattice reduction with respect to the general norm that corresponds to K. It follows that the generalized Gauss algorithm of Kaib and Schnorr (which is faster than the “onion skins” algorithm) computes the lattice size of any convex body in R2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathbb R^2$$\end{document}. We extend the work of Kaib and Schnorr to dimension three, providing a fast algorithm for lattice reduction with respect to the general norm defined by a convex origin-symmetric body K⊂R3\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$K\subset \mathbb R^3$$\end{document}. We also explain how to recover the successive minima of K and the lattice size of P from the obtained reduced basis and therefore provide a fast algorithm for computing the lattice size of any convex body P⊂R3\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$P\subset \mathbb R^3$$\end{document}.
引用
收藏
页码:287 / 310
页数:23
相关论文
共 50 条
  • [21] A MORE EFFICIENT ALGORITHM FOR LATTICE BASIS REDUCTION
    SCHNORR, CP
    LECTURE NOTES IN COMPUTER SCIENCE, 1986, 226 : 359 - 369
  • [22] A MORE EFFICIENT ALGORITHM FOR LATTICE BASIS REDUCTION
    SCHNORR, CP
    JOURNAL OF ALGORITHMS, 1988, 9 (01) : 47 - 62
  • [23] Lattice basis reduction for indefinite forms and an application
    Ivanyos, G
    Szanto, A
    DISCRETE MATHEMATICS, 1996, 153 (1-3) : 177 - 188
  • [24] A CBIR framework: Dimension Reduction by Radial Basis Function
    Liu, Wei
    Ma, Yujing
    Li, Wenhui
    Wang, Wei
    Liu, Yan
    PROCEEDINGS OF 2012 2ND INTERNATIONAL CONFERENCE ON COMPUTER SCIENCE AND NETWORK TECHNOLOGY (ICCSNT 2012), 2012, : 271 - 274
  • [25] On the Centralizer Dimension and Lattice of Generalized Baumslag-Solitar Groups
    Dudkin, F. A.
    SIBERIAN MATHEMATICAL JOURNAL, 2018, 59 (03) : 403 - 414
  • [26] Multiclass classifiers based on dimension reduction with generalized LDA
    Kim, Hyunsoo
    Drake, Barry L.
    Park, Haesun
    PATTERN RECOGNITION, 2007, 40 (11) : 2939 - 2945
  • [27] OPTIMAL DIMENSION REDUCTION FOR ARRAY PROCESSING-GENERALIZED
    ANDERSON, S
    NEHORAI, A
    IEEE TRANSACTIONS ON SIGNAL PROCESSING, 1995, 43 (08) : 2025 - 2027
  • [28] Generalized Elongation Method: From One-Dimension to Three-Dimension
    Aoki, Yuriko
    Gu, Feng Long
    INTERNATIONAL CONFERENCE OF COMPUTATIONAL METHODS IN SCIENCES AND ENGINEERING 2009 (ICCMSE 2009), 2012, 1504 : 647 - 650
  • [29] IMPLICIT FUNCTIONS AND PARAMETRIZATIONS IN DIMENSION THREE: GENERALIZED SOLUTIONS
    Nicolai, Mihaela Roxana
    Tiba, Dan
    DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS, 2015, 35 (06) : 2701 - 2710
  • [30] A complexity analysis of a Jacobi method for lattice basis reduction
    Tian, Zhaofei
    Qiao, Sanzheng
    ACM International Conference Proceeding Series, 2012, : 53 - 60