Lattice Size and Generalized Basis Reduction in Dimension Three

被引:0
|
作者
Anthony Harrison
Jenya Soprunova
机构
[1] Kent State University,Department of Mathematics
来源
关键词
Lattice size; Successive minima; Generalized basis reduction; 52B20; 11H06; 52C05; 52C07;
D O I
暂无
中图分类号
学科分类号
摘要
The lattice size of a lattice polytope P was defined and studied by Schicho, and Castryck and Cools. They provided an “onion skins” algorithm for computing the lattice size of a lattice polygon P in R2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathbb R^2$$\end{document} based on passing successively to the convex hull of the interior lattice points of P. We explain the connection of the lattice size to the successive minima of K=(P+(-P))∗\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$K=(P+(-P))^*$$\end{document} and to the lattice reduction with respect to the general norm that corresponds to K. It follows that the generalized Gauss algorithm of Kaib and Schnorr (which is faster than the “onion skins” algorithm) computes the lattice size of any convex body in R2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathbb R^2$$\end{document}. We extend the work of Kaib and Schnorr to dimension three, providing a fast algorithm for lattice reduction with respect to the general norm defined by a convex origin-symmetric body K⊂R3\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$K\subset \mathbb R^3$$\end{document}. We also explain how to recover the successive minima of K and the lattice size of P from the obtained reduced basis and therefore provide a fast algorithm for computing the lattice size of any convex body P⊂R3\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$P\subset \mathbb R^3$$\end{document}.
引用
收藏
页码:287 / 310
页数:23
相关论文
共 50 条
  • [1] Lattice Size and Generalized Basis Reduction in Dimension Three
    Harrison, Anthony
    Soprunova, Jenya
    DISCRETE & COMPUTATIONAL GEOMETRY, 2022, 67 (01) : 287 - 310
  • [2] Flags and lattice basis reduction
    Lenstra, HW
    EUROPEAN CONGRESS OF MATHEMATICS, VOL I, 2001, 201 : 37 - 51
  • [3] Lattice basis reduction techniques
    Dabral, Ajay
    Pal, S. K.
    Yadav, Arvind
    MULTIMEDIA TOOLS AND APPLICATIONS, 2024, 83 (27) : 69619 - 69646
  • [4] THE GENERALIZED BASIS REDUCTION ALGORITHM
    LOVASZ, L
    SCARF, HE
    MATHEMATICS OF OPERATIONS RESEARCH, 1992, 17 (03) : 751 - 764
  • [5] Generalized basis reduction algorithm
    Lovasz, Laszlo
    Scarf, Herbert E.
    Mathematics of Operations Research, 1992, 17 (03)
  • [6] SIMULTANEOUS REDUCTION OF A LATTICE BASIS AND ITS RECIPROCAL BASIS
    SEYSEN, M
    COMBINATORICA, 1993, 13 (03) : 363 - 376
  • [7] On generalized Berwald manifolds of dimension three
    Vincze, Csaba
    Olah, Mark
    PUBLICATIONES MATHEMATICAE-DEBRECEN, 2022, 100 (3-4): : 337 - 363
  • [8] Secure Outsourcing of Lattice Basis Reduction
    Liu, Jiayang
    Bi, Jingguo
    NEURAL INFORMATION PROCESSING (ICONIP 2019), PT II, 2019, 11954 : 603 - 615
  • [9] Practical lattice basis sampling reduction
    Buchmann, Johannes
    Ludwig, Christoph
    ALGORITHMIC NUMBER THEORY, PROCEEDINGS, 2006, 4076 : 222 - 237
  • [10] PARALLEL GCD AND LATTICE BASIS REDUCTION
    ROCH, JL
    VILLARD, G
    LECTURE NOTES IN COMPUTER SCIENCE, 1992, 634 : 557 - 564