Malmquist-type Results for Difference Equations with Periodic Coefficients

被引:0
|
作者
Jarkko Rieppo
机构
[1] University of Eastern Finland,Department of Physics and Mathematics
关键词
Entire function; Periodic function; Non-linear difference equation; 39A45; 30D35; 30D05;
D O I
暂无
中图分类号
学科分类号
摘要
An earlier result by N. Yanagihara leads us to consider the nature of a meromorphic solution f\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$f$$\end{document} of a difference equation f(z+c)=∑j=0npj(z)(f(z))j,\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\begin{aligned} f(z+c)=\sum _{j=0}^n p_j(z)(f(z))^j, \end{aligned}$$\end{document}where pj\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$p_j$$\end{document} are periodic entire functions of the period c∈C\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$c\in \mathbb {C}$$\end{document}, pn≢0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$p_n \not \equiv 0$$\end{document} and n>1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$n >1$$\end{document}. We shall show that if f\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$f$$\end{document} is non-periodic entire and of finite order of growth, it must be algebraic over any field that contains the coefficients of the difference equation. We also consider the special case n=2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$n=2$$\end{document} more carefully and obtain specific information on the solution f\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$f$$\end{document}. Our methods are based on Nevanlinna theory and algebraic field theory.
引用
收藏
页码:449 / 457
页数:8
相关论文
共 50 条
  • [41] Exponential dichotomy of systems of linear difference equations with periodic coefficients
    G. V. Demidenko
    A. A. Bondar
    Siberian Mathematical Journal, 2016, 57 : 969 - 980
  • [42] Critical Oscillation Constant for Difference Equations with Almost Periodic Coefficients
    Hasil, Petr
    Vesely, Michal
    ABSTRACT AND APPLIED ANALYSIS, 2012,
  • [43] Exponential dichotomy of systems of linear difference equations with periodic coefficients
    Demidenko, G. V.
    Bondar, A. A.
    SIBERIAN MATHEMATICAL JOURNAL, 2016, 57 (06) : 969 - 980
  • [44] A new Malmquist-type green total factor productivity measure: An application to China
    Chen, Xiang
    Chen, Yong
    Huang, Wenli
    Zhang, Xuping
    ENERGY ECONOMICS, 2023, 117
  • [45] A Malmquist–Steinmetz Theorem for Difference Equations
    Yueyang Zhang
    Risto Korhonen
    Constructive Approximation, 2024, 59 : 619 - 673
  • [46] Oscillation results for difference equations with several oscillating coefficients
    Chatzarakis, G. E.
    Lafci, M.
    Stavroulakis, I. P.
    APPLIED MATHEMATICS AND COMPUTATION, 2015, 251 : 81 - 91
  • [47] A new Malmquist-type green total factor productivity measure: An application to China
    Chen, Xiang
    Chen, Yong
    Huang, Wenli
    Zhang, Xuping
    ENERGY ECONOMICS, 2023, 117
  • [48] Exponential growth and oscillation of nonlinear homogeneous difference equations with periodic coefficients
    Zhu, DM
    Chen, SZ
    COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2001, 41 (3-4) : 415 - 422
  • [49] Asymptotic stability of solutions to perturbed linear difference equations with periodic coefficients
    Aydin, K
    Bulgak, H
    Demidenko, GV
    SIBERIAN MATHEMATICAL JOURNAL, 2002, 43 (03) : 389 - 401
  • [50] Two-dimensional solvable system of difference equations with periodic coefficients
    Stevic, Stevo
    MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2019, 42 (18) : 6757 - 6774