An earlier result by N. Yanagihara leads us to consider the nature of a meromorphic solution f\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$f$$\end{document} of a difference equation f(z+c)=∑j=0npj(z)(f(z))j,\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$\begin{aligned} f(z+c)=\sum _{j=0}^n p_j(z)(f(z))^j, \end{aligned}$$\end{document}where pj\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$p_j$$\end{document} are periodic entire functions of the period c∈C\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$c\in \mathbb {C}$$\end{document}, pn≢0\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$p_n \not \equiv 0$$\end{document} and n>1\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$n >1$$\end{document}. We shall show that if f\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$f$$\end{document} is non-periodic entire and of finite order of growth, it must be algebraic over any field that contains the coefficients of the difference equation. We also consider the special case n=2\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$n=2$$\end{document} more carefully and obtain specific information on the solution f\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$f$$\end{document}. Our methods are based on Nevanlinna theory and algebraic field theory.
机构:
Jiangsu Second Normal Univ, Math & Informat Technol Sch, Nanjing 210013, Jiangsu, Peoples R ChinaJiangsu Second Normal Univ, Math & Informat Technol Sch, Nanjing 210013, Jiangsu, Peoples R China
机构:
Inst Politecn Braganca, Escola Super Tecnol & Gestao, P-5301857 Braganca, PortugalInst Politecn Braganca, Escola Super Tecnol & Gestao, P-5301857 Braganca, Portugal
Vaz, C. B.
Camanho, A. S.
论文数: 0引用数: 0
h-index: 0
机构:
Univ Porto, Fac Engn, Oporto, PortugalInst Politecn Braganca, Escola Super Tecnol & Gestao, P-5301857 Braganca, Portugal