Malmquist-type Results for Difference Equations with Periodic Coefficients

被引:0
|
作者
Jarkko Rieppo
机构
[1] University of Eastern Finland,Department of Physics and Mathematics
关键词
Entire function; Periodic function; Non-linear difference equation; 39A45; 30D35; 30D05;
D O I
暂无
中图分类号
学科分类号
摘要
An earlier result by N. Yanagihara leads us to consider the nature of a meromorphic solution f\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$f$$\end{document} of a difference equation f(z+c)=∑j=0npj(z)(f(z))j,\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\begin{aligned} f(z+c)=\sum _{j=0}^n p_j(z)(f(z))^j, \end{aligned}$$\end{document}where pj\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$p_j$$\end{document} are periodic entire functions of the period c∈C\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$c\in \mathbb {C}$$\end{document}, pn≢0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$p_n \not \equiv 0$$\end{document} and n>1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$n >1$$\end{document}. We shall show that if f\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$f$$\end{document} is non-periodic entire and of finite order of growth, it must be algebraic over any field that contains the coefficients of the difference equation. We also consider the special case n=2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$n=2$$\end{document} more carefully and obtain specific information on the solution f\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$f$$\end{document}. Our methods are based on Nevanlinna theory and algebraic field theory.
引用
收藏
页码:449 / 457
页数:8
相关论文
共 50 条
  • [31] Stability of solutions of linear difference equations with periodic coefficients
    Tsypkin, YZ
    Parks, PC
    Vishnyakov, AN
    Warwick, K
    INTERNATIONAL JOURNAL OF CONTROL, 1996, 64 (05) : 959 - 966
  • [32] TO THE THEORY OF LINEAR DIFFERENCE-EQUATIONS WITH PERIODIC COEFFICIENTS
    PELYUKH, GP
    DOKLADY AKADEMII NAUK, 1994, 336 (04) : 451 - 452
  • [33] The almost periodic type difference equations
    Hong, JL
    Núñez, C
    MATHEMATICAL AND COMPUTER MODELLING, 1998, 28 (12) : 21 - 31
  • [34] MEROMORPHIC SOLUTIONS TO COMPLEX DIFFERENCE AND q-DIFFERENCE EQUATIONS OF MALMQUIST TYPE
    Zhang, Jie
    Zhang, Jianjun
    ELECTRONIC JOURNAL OF DIFFERENTIAL EQUATIONS, 2014,
  • [35] GROWTH OF MEROMORPHIC SOLUTIONS FOR COMPLEX DIFFERENCE EQUATIONS OF MALMQUIST TYPE
    Zhang, Y. Y.
    Gao, Z. S.
    Zhang, J. L.
    BULLETIN OF THE IRANIAN MATHEMATICAL SOCIETY, 2016, 42 (06): : 1497 - 1505
  • [36] SOME PROPERTIES ABOUT COMPLEX DIFFERENCE EQUATIONS OF MALMQUIST TYPE
    Qi, Jianming
    DIFFERENTIAL EQUATIONS & APPLICATIONS, 2019, 11 (03): : 427 - 437
  • [37] Oscillation results for difference equations with oscillating coefficients
    Chatzarakis, George E.
    Peics, Hajnalka
    Pinelas, Sandra
    Stavroulakis, Ioannis P.
    ADVANCES IN DIFFERENCE EQUATIONS, 2015,
  • [38] Oscillation results for difference equations with oscillating coefficients
    George E Chatzarakis
    Hajnalka Péics
    Sandra Pinelas
    Ioannis P Stavroulakis
    Advances in Difference Equations, 2015
  • [39] Malmquist-type indices in the presence of negative data: An application to bank branches
    Portela, Maria C. A. S.
    Thanassoulis, Emmanuel
    JOURNAL OF BANKING & FINANCE, 2010, 34 (07) : 1472 - 1483
  • [40] Eventually Periodic Solutions for Difference Equations with Periodic Coefficients and Nonlinear Control Functions
    Hou, Chengmin
    Cheng, Sui Sun
    DISCRETE DYNAMICS IN NATURE AND SOCIETY, 2008, 2008