Neutrino dipole moments and charge radii in non-commutative space-time

被引:0
|
作者
P. Minkowski
P. Schupp
J. Trampetić
机构
[1] CERN,Theory Division
[2] University of Bern,Institute for Theoretical Physics
[3] International University Bremen,Theoretical Physics Division
[4] Rudjer Bošković Institute,Theoretische Physik
[5] Universität München,undefined
关键词
Dipole Moment; Energy Scale; Charge Radius; Majorana Neutrino;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper we obtain a bound \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\Lambda_{\mathrm {NC}}\stackrel{ < }{\sim} 150 $\end{document} TeV on the scale of space-time non-commutativity considering photon-neutrino interactions. We compute “*-dipole moments” and “*-charge radii” originating from space-time non-commutativity and compare them with the dipole moments calculated in the neutrino-mass extended standard model (SM). The computation depends on the nature of the neutrinos, Dirac versus Majorana, their mass and the energy scale. We focus on Majorana neutrinos. The “*-charge radius” is found to be \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $r^* = \sqrt{|\langle r^2_{\nu}\rangle_{\mathrm {NC}}|}=\left|3\sum_{i=1}^3 ({\theta}^{0i})^2\right|^{1/4} \stackrel{<}{\sim} 1.6 \times 10^{-19}\, {\mathrm {cm}}$\end{document} at \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\Lambda_{\mathrm {NC}} = 150$\end{document} TeV.
引用
收藏
页码:123 / 128
页数:5
相关论文
共 50 条
  • [1] Neutrino dipole moments and charge radii in non-commutative space-time
    Minkowski, P
    Schupp, P
    Trampetic, J
    EUROPEAN PHYSICAL JOURNAL C, 2004, 37 (01): : 123 - 128
  • [2] A test for non-commutative space-time
    Sidharth, BG
    INTERNATIONAL JOURNAL OF MODERN PHYSICS E, 2005, 14 (08): : 1247 - 1249
  • [3] Non-commutative BTZ Space-time
    Maceda, Marco
    Macias, Alfredo
    RECENT DEVELOPMENTS ON PHYSICS IN STRONG GRAVITATIONAL FIELDS, 2014, 1577 : 236 - 239
  • [4] Covariant non-commutative space-time
    Heckman, Jonathan J.
    Verlinde, Herman
    NUCLEAR PHYSICS B, 2015, 894 : 58 - 74
  • [5] Inflation on a non-commutative space-time
    Calmet, Xavier
    Fritz, Christopher
    PHYSICS LETTERS B, 2015, 747 : 406 - 409
  • [6] Exact discretization of non-commutative space-time
    Tarasov, V. E.
    MODERN PHYSICS LETTERS A, 2020, 35 (16)
  • [7] Non-commutative space-time and the uncertainty principle
    Carlen, E
    Mendes, RV
    PHYSICS LETTERS A, 2001, 290 (3-4) : 109 - 114
  • [8] The standard model on non-commutative space-time
    Calmet, X
    Jurco, B
    Schupp, P
    Wess, J
    Wohlgenannt, M
    EUROPEAN PHYSICAL JOURNAL C, 2002, 23 (02): : 363 - 376
  • [9] Quantum mechanics and non-commutative space-time
    Mendes, RV
    PHYSICS LETTERS A, 1996, 210 (4-5) : 232 - 240
  • [10] The standard model on non-commutative space-time
    X. Calmet
    B. Jurčo
    P. Schupp
    J. Wess
    M. Wohlgenannt
    The European Physical Journal C - Particles and Fields, 2002, 23 : 363 - 376