Non-commutative space-time and the uncertainty principle

被引:18
|
作者
Carlen, E
Mendes, RV
机构
[1] Univ Lisbon, Grp Fis Matemat, P-1699 Lisbon, Portugal
[2] Georgia Inst Technol, Sch Math, Atlanta, GA 30332 USA
关键词
D O I
10.1016/S0375-9601(01)00673-9
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
The full algebra of relativistic quantum mechanics (Lorentz plus Heisenberg) is unstable. Stabilization by deformation leads to a new deformation parameter epsilonl(2), l being a length and epsilon a +/- sign, The implications of the deformed algebras for the uncertainty principle and the density of states are worked out and compared with the results of past analysis following from gravity and string theory. (C) 2001 Elsevier Science B.V. All rights reserved.
引用
收藏
页码:109 / 114
页数:6
相关论文
共 50 条
  • [1] Non-commutative BTZ Space-time
    Maceda, Marco
    Macias, Alfredo
    [J]. RECENT DEVELOPMENTS ON PHYSICS IN STRONG GRAVITATIONAL FIELDS, 2014, 1577 : 236 - 239
  • [2] A test for non-commutative space-time
    Sidharth, BG
    [J]. INTERNATIONAL JOURNAL OF MODERN PHYSICS E, 2005, 14 (08): : 1247 - 1249
  • [3] Covariant non-commutative space-time
    Heckman, Jonathan J.
    Verlinde, Herman
    [J]. NUCLEAR PHYSICS B, 2015, 894 : 58 - 74
  • [4] Inflation on a non-commutative space-time
    Calmet, Xavier
    Fritz, Christopher
    [J]. PHYSICS LETTERS B, 2015, 747 : 406 - 409
  • [5] Exact discretization of non-commutative space-time
    Tarasov, V. E.
    [J]. MODERN PHYSICS LETTERS A, 2020, 35 (16)
  • [6] The standard model on non-commutative space-time
    Calmet, X
    Jurco, B
    Schupp, P
    Wess, J
    Wohlgenannt, M
    [J]. EUROPEAN PHYSICAL JOURNAL C, 2002, 23 (02): : 363 - 376
  • [7] Quantum mechanics and non-commutative space-time
    Mendes, RV
    [J]. PHYSICS LETTERS A, 1996, 210 (4-5) : 232 - 240
  • [8] The standard model on non-commutative space-time
    X. Calmet
    B. Jurčo
    P. Schupp
    J. Wess
    M. Wohlgenannt
    [J]. The European Physical Journal C - Particles and Fields, 2002, 23 : 363 - 376
  • [9] Non-commutative space-time and quantum groups
    Wess, J
    [J]. PARTICLES, FIELDS, AND GRAVITATION, 1998, 453 : 155 - 163
  • [10] Non-commutative phase space and its space-time symmetry
    李康
    沙依甫加马力·达吾来提
    [J]. Chinese Physics C, 2010, 34 (07) : 944 - 948