Non-commutative phase space and its space-time symmetry

被引:0
|
作者
李康 [1 ]
沙依甫加马力·达吾来提 [2 ]
机构
[1] Department of Physics,Hangzhou Normal University
[2] School of Physics Science and Technology,Xinjiang University
基金
中国国家自然科学基金;
关键词
non-commutative phase space; space-time symmetry; Lorentz transformation;
D O I
暂无
中图分类号
O412.1 [相对论];
学科分类号
摘要
First a description of 2+1 dimensional non-commutative(NC) phase space is presented,and then we find that in this formulation the generalized Bopp’s shift has a symmetric representation and one can easily and straightforwardly define the star product on NC phase space. Then we define non-commutative Lorentz transformations both on NC space and NC phase space. We also discuss the Poincare symmetry. Finally we point out that our NC phase space formulation and the NC Lorentz transformations are applicable to any even dimensional NC space and NC phase space.
引用
收藏
页码:944 / 948
页数:5
相关论文
共 50 条
  • [1] Non-commutative phase space and its space-time symmetry
    Li Kang
    Sayipjamal, Dulat
    CHINESE PHYSICS C, 2010, 34 (07) : 944 - 948
  • [2] Non-commutative BTZ Space-time
    Maceda, Marco
    Macias, Alfredo
    RECENT DEVELOPMENTS ON PHYSICS IN STRONG GRAVITATIONAL FIELDS, 2014, 1577 : 236 - 239
  • [3] A test for non-commutative space-time
    Sidharth, BG
    INTERNATIONAL JOURNAL OF MODERN PHYSICS E, 2005, 14 (08): : 1247 - 1249
  • [4] Covariant non-commutative space-time
    Heckman, Jonathan J.
    Verlinde, Herman
    NUCLEAR PHYSICS B, 2015, 894 : 58 - 74
  • [5] Inflation on a non-commutative space-time
    Calmet, Xavier
    Fritz, Christopher
    PHYSICS LETTERS B, 2015, 747 : 406 - 409
  • [6] Maximal acceleration in non-commutative space-time and its implications
    Harikumar, E.
    Rajagopal, Vishnu
    ANNALS OF PHYSICS, 2020, 423
  • [7] Non-commutative space-time algebra and the spectrum of its operators
    Wess, J
    SUPERSYMMETRIES AND QUANTUM SYMMETRIES, 1999, 524 : 373 - 379
  • [8] Exact discretization of non-commutative space-time
    Tarasov, V. E.
    MODERN PHYSICS LETTERS A, 2020, 35 (16)
  • [9] Non-commutative space-time and the uncertainty principle
    Carlen, E
    Mendes, RV
    PHYSICS LETTERS A, 2001, 290 (3-4) : 109 - 114
  • [10] The standard model on non-commutative space-time
    Calmet, X
    Jurco, B
    Schupp, P
    Wess, J
    Wohlgenannt, M
    EUROPEAN PHYSICAL JOURNAL C, 2002, 23 (02): : 363 - 376