Covariant non-commutative space-time

被引:37
|
作者
Heckman, Jonathan J. [1 ]
Verlinde, Herman [2 ]
机构
[1] Harvard Univ, Jefferson Phys Lab, Cambridge, MA 02138 USA
[2] Princeton Univ, Dept Phys, Princeton, NJ 08544 USA
基金
美国国家科学基金会;
关键词
D O I
10.1016/j.nuclphysb.2015.02.018
中图分类号
O412 [相对论、场论]; O572.2 [粒子物理学];
学科分类号
摘要
We introduce a covariant non-commutative deformation of 3 + 1-dimensional conformal field theory. The deformation introduces a short-distance scale l(p), and thus breaks scale invariance, but preserves all space time isometries. The non-commutative algebra is defined on space times with non-zero constant curvature, i.e. dS(4) or AdS(4). The construction makes essential use of the representation of CFT tensor operators as polynomials in an auxiliary polarization tensor. The polarization tensor takes active part in the non-commutative algebra, which for dS(4) takes the form of so(5, 1), while for AdS(4) it assembles into so (4, 2). The structure of the non-commutative correlation functions hints that the deformed theory contains gravitational interactions and a Regge-like trajectory of higher spin excitations. (C) 2015 The Authors. Published by Elsevier B.V.
引用
收藏
页码:58 / 74
页数:17
相关论文
共 50 条
  • [1] Non-commutative BTZ Space-time
    Maceda, Marco
    Macias, Alfredo
    [J]. RECENT DEVELOPMENTS ON PHYSICS IN STRONG GRAVITATIONAL FIELDS, 2014, 1577 : 236 - 239
  • [2] A test for non-commutative space-time
    Sidharth, BG
    [J]. INTERNATIONAL JOURNAL OF MODERN PHYSICS E, 2005, 14 (08): : 1247 - 1249
  • [3] Inflation on a non-commutative space-time
    Calmet, Xavier
    Fritz, Christopher
    [J]. PHYSICS LETTERS B, 2015, 747 : 406 - 409
  • [4] Exact discretization of non-commutative space-time
    Tarasov, V. E.
    [J]. MODERN PHYSICS LETTERS A, 2020, 35 (16)
  • [5] Non-commutative space-time and the uncertainty principle
    Carlen, E
    Mendes, RV
    [J]. PHYSICS LETTERS A, 2001, 290 (3-4) : 109 - 114
  • [6] The standard model on non-commutative space-time
    Calmet, X
    Jurco, B
    Schupp, P
    Wess, J
    Wohlgenannt, M
    [J]. EUROPEAN PHYSICAL JOURNAL C, 2002, 23 (02): : 363 - 376
  • [7] Quantum mechanics and non-commutative space-time
    Mendes, RV
    [J]. PHYSICS LETTERS A, 1996, 210 (4-5) : 232 - 240
  • [8] The standard model on non-commutative space-time
    X. Calmet
    B. Jurčo
    P. Schupp
    J. Wess
    M. Wohlgenannt
    [J]. The European Physical Journal C - Particles and Fields, 2002, 23 : 363 - 376
  • [9] Non-commutative space-time and quantum groups
    Wess, J
    [J]. PARTICLES, FIELDS, AND GRAVITATION, 1998, 453 : 155 - 163
  • [10] Non-commutative phase space and its space-time symmetry
    李康
    沙依甫加马力·达吾来提
    [J]. Chinese Physics C, 2010, 34 (07) : 944 - 948