Neutrino dipole moments and charge radii in non-commutative space-time

被引:0
|
作者
P. Minkowski
P. Schupp
J. Trampetić
机构
[1] CERN,Theory Division
[2] University of Bern,Institute for Theoretical Physics
[3] International University Bremen,Theoretical Physics Division
[4] Rudjer Bošković Institute,Theoretische Physik
[5] Universität München,undefined
关键词
Dipole Moment; Energy Scale; Charge Radius; Majorana Neutrino;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper we obtain a bound \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\Lambda_{\mathrm {NC}}\stackrel{ < }{\sim} 150 $\end{document} TeV on the scale of space-time non-commutativity considering photon-neutrino interactions. We compute “*-dipole moments” and “*-charge radii” originating from space-time non-commutativity and compare them with the dipole moments calculated in the neutrino-mass extended standard model (SM). The computation depends on the nature of the neutrinos, Dirac versus Majorana, their mass and the energy scale. We focus on Majorana neutrinos. The “*-charge radius” is found to be \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $r^* = \sqrt{|\langle r^2_{\nu}\rangle_{\mathrm {NC}}|}=\left|3\sum_{i=1}^3 ({\theta}^{0i})^2\right|^{1/4} \stackrel{<}{\sim} 1.6 \times 10^{-19}\, {\mathrm {cm}}$\end{document} at \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\Lambda_{\mathrm {NC}} = 150$\end{document} TeV.
引用
收藏
页码:123 / 128
页数:5
相关论文
共 50 条
  • [21] Stochastic calculus and processes in non-commutative space-time
    Mendes, RV
    SEMINAR ON STOCHASTIC ANALYSIS, RANDOM FIELDS AND APPLICATIONS III, 2002, 52 : 205 - 217
  • [22] Strong and electroweak interactions and their unification with non-commutative space-time
    X.-G. He
    The European Physical Journal C - Particles and Fields, 2003, 28 : 557 - 560
  • [23] Spin quantum entanglement in non-commutative curved space-time
    Mohadi, A.
    Mebarki, N.
    Aissaoui, H.
    Boussahel, M.
    INDIAN JOURNAL OF PHYSICS, 2022, 96 (13) : 3987 - 3994
  • [24] Lyman-alpha spectroscopy in non-commutative space-time
    Moumni, M.
    BenSlama, A.
    Zaim, S.
    AFRICAN REVIEW OF PHYSICS, 2018, 13 : 25 - 28
  • [25] Maximal acceleration in a Lorentz invariant non-commutative space-time
    Harikumar, E.
    Panja, Suman Kumar
    Rajagopal, Vishnu
    EUROPEAN PHYSICAL JOURNAL PLUS, 2022, 137 (08):
  • [26] Maximal acceleration in non-commutative space-time and its implications
    Harikumar, E.
    Rajagopal, Vishnu
    ANNALS OF PHYSICS, 2020, 423
  • [27] Fuzzy spaces, non-commutative geometry and fermionic space-time
    Sidharth, BG
    NUOVO CIMENTO DELLA SOCIETA ITALIANA DI FISICA B-GENERAL PHYSICS RELATIVITY ASTRONOMY AND MATHEMATICAL PHYSICS AND METHODS, 2002, 117 (06): : 703 - 710
  • [28] Newton's law in an effective non-commutative space-time
    Gruppuso, A
    JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 2005, 38 (09): : 2039 - 2042
  • [29] Non-commutative space-time of doubly special relativity theories
    Kowalski-Glikman, J
    Nowak, S
    INTERNATIONAL JOURNAL OF MODERN PHYSICS D, 2003, 12 (02): : 299 - 315
  • [30] Non-commutative space-time algebra and the spectrum of its operators
    Wess, J
    SUPERSYMMETRIES AND QUANTUM SYMMETRIES, 1999, 524 : 373 - 379