Prediction and observation of an antiferromagnetic topological insulator

被引:0
|
作者
M. M. Otrokov
I. I. Klimovskikh
H. Bentmann
D. Estyunin
A. Zeugner
Z. S. Aliev
S. Gaß
A. U. B. Wolter
A. V. Koroleva
A. M. Shikin
M. Blanco-Rey
M. Hoffmann
I. P. Rusinov
A. Yu. Vyazovskaya
S. V. Eremeev
Yu. M. Koroteev
V. M. Kuznetsov
F. Freyse
J. Sánchez-Barriga
I. R. Amiraslanov
M. B. Babanly
N. T. Mamedov
N. A. Abdullayev
V. N. Zverev
A. Alfonsov
V. Kataev
B. Büchner
E. F. Schwier
S. Kumar
A. Kimura
L. Petaccia
G. Di Santo
R. C. Vidal
S. Schatz
K. Kißner
M. Ünzelmann
C. H. Min
Simon Moser
T. R. F. Peixoto
F. Reinert
A. Ernst
P. M. Echenique
A. Isaeva
E. V. Chulkov
机构
[1] Centro Mixto CSIC-UPV/EHU,Centro de Física de Materiales (CFM
[2] Basque Foundation for Science,MPC)
[3] Donostia International Physics Center (DIPC),IKERBASQUE
[4] Saint Petersburg State University,Experimentelle Physik VII
[5] Universität Würzburg,Faculty of Chemistry and Food Chemistry
[6] Technische Universität Dresden,Institute of Physics
[7] Azerbaijan National Academy of Sciences,Institut für Theoretische Physik
[8] Azerbaijan State Oil and Industry University,Institute of Strength Physics and Materials Science
[9] Institute for Solid State Research,Elektronenspeicherring BESSY II
[10] Leibniz IFW Dresden,Institute of Catalysis and Inorganic Chemistry
[11] Departamento de Física de Materiales UPV/EHU,Institute of Solid State Physics
[12] Johannes Kepler Universität,Faculty of Physics
[13] Tomsk State University,Hiroshima Synchrotron Radiation Center
[14] Russian Academy of Sciences,Department of Physical Sciences, Graduate School of Science
[15] Helmholtz-Zentrum Berlin für Materialien und Energie,Advanced Light Source
[16] Azerbaijan National Academy of Science,undefined
[17] Russian Academy of Sciences,undefined
[18] Technische Universität Dresden,undefined
[19] Hiroshima University,undefined
[20] Hiroshima University,undefined
[21] Elettra Sincrotrone Trieste,undefined
[22] Lawrence Berkeley National Laboratory,undefined
[23] Max-Planck-Institut für Mikrostrukturphysik,undefined
来源
Nature | 2019年 / 576卷
关键词
D O I
暂无
中图分类号
学科分类号
摘要
Magnetic topological insulators are narrow-gap semiconductor materials that combine non-trivial band topology and magnetic order1. Unlike their nonmagnetic counterparts, magnetic topological insulators may have some of the surfaces gapped, which enables a number of exotic phenomena that have potential applications in spintronics1, such as the quantum anomalous Hall effect2 and chiral Majorana fermions3. So far, magnetic topological insulators have only been created by means of doping nonmagnetic topological insulators with 3d transition-metal elements; however, such an approach leads to strongly inhomogeneous magnetic4 and electronic5 properties of these materials, restricting the observation of important effects to very low temperatures2,3. An intrinsic magnetic topological insulator—a stoichiometric well ordered magnetic compound—could be an ideal solution to these problems, but no such material has been observed so far. Here we predict by ab initio calculations and further confirm using various experimental techniques the realization of an antiferromagnetic topological insulator in the layered van der Waals compound MnBi2Te4. The antiferromagnetic ordering  that MnBi2Te4  shows makes it invariant with respect to the combination of the time-reversal and primitive-lattice translation symmetries, giving rise to a ℤ2 topological classification; ℤ2 = 1 for MnBi2Te4, confirming its topologically nontrivial nature. Our experiments indicate that the symmetry-breaking (0001) surface of MnBi2Te4 exhibits a large bandgap in the topological surface state. We expect this property to eventually enable the observation of a number of fundamental phenomena, among them quantized magnetoelectric coupling6–8 and axion electrodynamics9,10. Other exotic phenomena could become accessible at much higher temperatures than those reached so far, such as the quantum anomalous Hall effect2 and chiral Majorana fermions3.
引用
收藏
页码:416 / 422
页数:6
相关论文
共 50 条
  • [21] Termination switching of antiferromagnetic proximity effect in topological insulator
    Yang, Chao-Yao
    Pan, Lei
    Grutter, Alexander J.
    Wang, Haiying
    Che, Xiaoyu
    He, Qing Lin
    Wu, Yingying
    Gilbert, Dustin A.
    Shafer, Padraic
    Arenholz, Elke
    Wu, Hao
    Yin, Gen
    Deng, Peng
    Borchers, Julie Ann
    Ratcliff, William, II
    Wang, Kang L.
    [J]. SCIENCE ADVANCES, 2020, 6 (33)
  • [22] Quantum phase transitions of a disordered antiferromagnetic topological insulator
    Baireuther, P.
    Edge, J. M.
    Fulga, I. C.
    Beenakker, C. W. J.
    Tworzydlo, J.
    [J]. PHYSICAL REVIEW B, 2014, 89 (03)
  • [23] Antiferromagnetic topological insulator with selectively gapped Dirac cones
    Honma, A.
    Takane, D.
    Souma, S.
    Yamauchi, K.
    Wang, Y.
    Nakayama, K.
    Sugawara, K.
    Kitamura, M.
    Horiba, K.
    Kumigashira, H.
    Tanaka, K.
    Kim, T. K.
    Cacho, C.
    Oguchi, T.
    Takahashi, T.
    Ando, Yoichi
    Sato, T.
    [J]. NATURE COMMUNICATIONS, 2023, 14 (01)
  • [24] Magnetic Proximity Effect in an Antiferromagnetic Insulator/Topological Insulator Heterostructure with Sharp Interface
    刘宇新
    牛雪翻
    张仁聪
    张庆华
    滕静
    李永庆
    [J]. Chinese Physics Letters, 2021, 38 (05) : 105 - 109
  • [25] Magnetic Proximity Effect in an Antiferromagnetic Insulator/Topological Insulator Heterostructure with Sharp Interface
    Liu, Yuxin
    Niu, Xuefan
    Zhang, Rencong
    Zhang, Qinghua
    Teng, Jing
    Li, Yongqing
    [J]. CHINESE PHYSICS LETTERS, 2021, 38 (05)
  • [26] Robust axion insulator and Chern insulator phases in a two-dimensional antiferromagnetic topological insulator
    Chang Liu
    Yongchao Wang
    Hao Li
    Yang Wu
    Yaoxin Li
    Jiaheng Li
    Ke He
    Yong Xu
    Jinsong Zhang
    Yayu Wang
    [J]. Nature Materials, 2020, 19 : 522 - 527
  • [27] Robust axion insulator and Chern insulator phases in a two-dimensional antiferromagnetic topological insulator
    Liu, Chang
    Wang, Yongchao
    Li, Hao
    Wu, Yang
    Li, Yaoxin
    Li, Jiaheng
    He, Ke
    Xu, Yong
    Zhang, Jinsong
    Wang, Yayu
    [J]. NATURE MATERIALS, 2020, 19 (05) : 522 - +
  • [28] Pressure-Induced Topological and Structural Phase Transitions in an Antiferromagnetic Topological Insulator*
    Pei, Cuiying
    Xia, Yunyouyou
    Wu, Jiazhen
    Zhao, Yi
    Gao, Lingling
    Ying, Tianping
    Gao, Bo
    Li, Nana
    Yang, Wenge
    Zhang, Dongzhou
    Gou, Huiyang
    Chen, Yulin
    Hosono, Hideo
    Li, Gang
    Qi, Yanpeng
    [J]. CHINESE PHYSICS LETTERS, 2020, 37 (06)
  • [29] Pressure-Induced Topological and Structural Phase Transitions in an Antiferromagnetic Topological Insulator
    裴翠颖
    夏云悠悠
    邬家臻
    赵毅
    高玲玲
    应天平
    高波
    李娜娜
    杨文革
    张东舟
    缑慧阳
    陈宇林
    细野秀雄
    李刚
    齐彦鹏
    [J]. Chinese Physics Letters, 2020, (06) : 61 - 80
  • [30] Pressure-Induced Topological and Structural Phase Transitions in an Antiferromagnetic Topological Insulator
    裴翠颖
    夏云悠悠
    邬家臻
    赵毅
    高玲玲
    应天平
    高波
    李娜娜
    杨文革
    张东舟
    缑慧阳
    陈宇林
    细野秀雄
    李刚
    齐彦鹏
    [J]. Chinese Physics Letters., 2020, 37 (06) - 80