Prediction and observation of an antiferromagnetic topological insulator

被引:0
|
作者
M. M. Otrokov
I. I. Klimovskikh
H. Bentmann
D. Estyunin
A. Zeugner
Z. S. Aliev
S. Gaß
A. U. B. Wolter
A. V. Koroleva
A. M. Shikin
M. Blanco-Rey
M. Hoffmann
I. P. Rusinov
A. Yu. Vyazovskaya
S. V. Eremeev
Yu. M. Koroteev
V. M. Kuznetsov
F. Freyse
J. Sánchez-Barriga
I. R. Amiraslanov
M. B. Babanly
N. T. Mamedov
N. A. Abdullayev
V. N. Zverev
A. Alfonsov
V. Kataev
B. Büchner
E. F. Schwier
S. Kumar
A. Kimura
L. Petaccia
G. Di Santo
R. C. Vidal
S. Schatz
K. Kißner
M. Ünzelmann
C. H. Min
Simon Moser
T. R. F. Peixoto
F. Reinert
A. Ernst
P. M. Echenique
A. Isaeva
E. V. Chulkov
机构
[1] Centro Mixto CSIC-UPV/EHU,Centro de Física de Materiales (CFM
[2] Basque Foundation for Science,MPC)
[3] Donostia International Physics Center (DIPC),IKERBASQUE
[4] Saint Petersburg State University,Experimentelle Physik VII
[5] Universität Würzburg,Faculty of Chemistry and Food Chemistry
[6] Technische Universität Dresden,Institute of Physics
[7] Azerbaijan National Academy of Sciences,Institut für Theoretische Physik
[8] Azerbaijan State Oil and Industry University,Institute of Strength Physics and Materials Science
[9] Institute for Solid State Research,Elektronenspeicherring BESSY II
[10] Leibniz IFW Dresden,Institute of Catalysis and Inorganic Chemistry
[11] Departamento de Física de Materiales UPV/EHU,Institute of Solid State Physics
[12] Johannes Kepler Universität,Faculty of Physics
[13] Tomsk State University,Hiroshima Synchrotron Radiation Center
[14] Russian Academy of Sciences,Department of Physical Sciences, Graduate School of Science
[15] Helmholtz-Zentrum Berlin für Materialien und Energie,Advanced Light Source
[16] Azerbaijan National Academy of Science,undefined
[17] Russian Academy of Sciences,undefined
[18] Technische Universität Dresden,undefined
[19] Hiroshima University,undefined
[20] Hiroshima University,undefined
[21] Elettra Sincrotrone Trieste,undefined
[22] Lawrence Berkeley National Laboratory,undefined
[23] Max-Planck-Institut für Mikrostrukturphysik,undefined
来源
Nature | 2019年 / 576卷
关键词
D O I
暂无
中图分类号
学科分类号
摘要
Magnetic topological insulators are narrow-gap semiconductor materials that combine non-trivial band topology and magnetic order1. Unlike their nonmagnetic counterparts, magnetic topological insulators may have some of the surfaces gapped, which enables a number of exotic phenomena that have potential applications in spintronics1, such as the quantum anomalous Hall effect2 and chiral Majorana fermions3. So far, magnetic topological insulators have only been created by means of doping nonmagnetic topological insulators with 3d transition-metal elements; however, such an approach leads to strongly inhomogeneous magnetic4 and electronic5 properties of these materials, restricting the observation of important effects to very low temperatures2,3. An intrinsic magnetic topological insulator—a stoichiometric well ordered magnetic compound—could be an ideal solution to these problems, but no such material has been observed so far. Here we predict by ab initio calculations and further confirm using various experimental techniques the realization of an antiferromagnetic topological insulator in the layered van der Waals compound MnBi2Te4. The antiferromagnetic ordering  that MnBi2Te4  shows makes it invariant with respect to the combination of the time-reversal and primitive-lattice translation symmetries, giving rise to a ℤ2 topological classification; ℤ2 = 1 for MnBi2Te4, confirming its topologically nontrivial nature. Our experiments indicate that the symmetry-breaking (0001) surface of MnBi2Te4 exhibits a large bandgap in the topological surface state. We expect this property to eventually enable the observation of a number of fundamental phenomena, among them quantized magnetoelectric coupling6–8 and axion electrodynamics9,10. Other exotic phenomena could become accessible at much higher temperatures than those reached so far, such as the quantum anomalous Hall effect2 and chiral Majorana fermions3.
引用
收藏
页码:416 / 422
页数:6
相关论文
共 50 条
  • [41] Observation of Restored Topological Surface States in Magnetically Doped Topological Insulator
    Jinsu Kim
    Eun-Ha Shin
    Manoj K. Sharma
    Kyuwook Ihm
    Otgonbayar Dugerjav
    Chanyong Hwang
    Hwangho Lee
    Kyung-Tae Ko
    Jae-Hoon Park
    Miyoung Kim
    Hanchul Kim
    Myung-Hwa Jung
    [J]. Scientific Reports, 9
  • [42] Observation of Restored Topological Surface States in Magnetically Doped Topological Insulator
    Kim, Jinsu
    Shin, Eun-Ha
    Sharma, Manoj K.
    Ihm, Kyuwook
    Dugerjav, Otgonbayar
    Hwang, Chanyong
    Lee, Hwangho
    Ko, Kyung-Tae
    Park, Jae-Hoon
    Kim, Miyoung
    Kim, Hanchul
    Jung, Myung-Hwa
    [J]. SCIENTIFIC REPORTS, 2019, 9 (1)
  • [43] Negative Magnetoresistance in Antiferromagnetic Topological Insulator EuSn2As2
    Chen, Huan-Cheng
    Lou, Zhe-Feng
    Zhou, Yu-Xing
    Chen, Qin
    Xu, Bin-Jie
    Chen, Shui-Jin
    Du, Jian-Hua
    Yang, Jin-Hu
    Wang, Hang-Dong
    Fang, Ming-Hu
    [J]. CHINESE PHYSICS LETTERS, 2020, 37 (04)
  • [44] Interplay between Magnetism and Topology: Large Topological Hall Effect in an Antiferromagnetic Topological Insulator, EuCuAs
    Roychowdhury, Subhajit
    Samanta, Kartik
    Yanda, Premakumar
    Malaman, Bernard
    Yao, Mengyu
    Schnelle, Walter
    Guilmeau, Emmanuel
    Constantinou, Procopios
    Chandra, Sushmita
    Borrmann, Horst
    Vergniory, Maia G. G.
    Strocov, Vladimir
    Shekhar, Chandra
    Felser, Claudia
    [J]. JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2023, 145 (23) : 12920 - 12927
  • [45] Progress on the antiferromagnetic topological insulator MnBi2Te4
    Shuai Li
    Tianyu Liu
    Chang Liu
    Yayu Wang
    Hai-Zhou Lu
    X.C.Xie
    [J]. National Science Review, 2024, 11 (02) : 33 - 49
  • [46] Nonlinear level attraction of cavity axion polariton in antiferromagnetic topological insulator
    Xiao, Yang
    Wang, Huaiqiang
    Wang, Dinghui
    Lu, Ruifeng
    Yan, Xiaohong
    Guo, Hong
    Hu, C-M
    Xia, Ke
    Zhang, Haijun
    Xing, Dingyu
    [J]. PHYSICAL REVIEW B, 2021, 104 (11)
  • [47] Antiferromagnetic topological insulator in stable exfoliated two-dimensional materials
    Mao, Ning
    Wang, Hao
    Hu, Xiangting
    Niu, Chengwang
    Huang, Baibiao
    Dai, Ying
    [J]. PHYSICAL REVIEW B, 2020, 102 (11)
  • [48] Observation of Topological Magnon Insulator States in a Superconducting Circuit
    Cai, W.
    Han, J.
    Mei, Feng
    Xu, Y.
    Ma, Y.
    Li, X.
    Wang, H.
    Song, Y. P.
    Xue, Zheng-Yuan
    Yin, Zhang-qi
    Jia, Suotang
    Sun, Luyan
    [J]. PHYSICAL REVIEW LETTERS, 2019, 123 (08)
  • [49] Progress on the antiferromagnetic topological insulator MnBi2Te4
    Li, Shuai
    Liu, Tianyu
    Liu, Chang
    Wang, Yayu
    Lu, Hai-Zhou
    Xie, X. C.
    [J]. NATIONAL SCIENCE REVIEW, 2024, 11 (02)
  • [50] Observation of the topological Anderson insulator in disordered atomic wires
    Meier, Eric J.
    An, Fangzhao Alex
    Dauphin, Alexandre
    Maffei, Maria
    Massignan, Pietro
    Hughes, Taylor L.
    Gadway, Bryce
    [J]. SCIENCE, 2018, 362 (6417) : 929 - +