Prediction and observation of an antiferromagnetic topological insulator

被引:0
|
作者
M. M. Otrokov
I. I. Klimovskikh
H. Bentmann
D. Estyunin
A. Zeugner
Z. S. Aliev
S. Gaß
A. U. B. Wolter
A. V. Koroleva
A. M. Shikin
M. Blanco-Rey
M. Hoffmann
I. P. Rusinov
A. Yu. Vyazovskaya
S. V. Eremeev
Yu. M. Koroteev
V. M. Kuznetsov
F. Freyse
J. Sánchez-Barriga
I. R. Amiraslanov
M. B. Babanly
N. T. Mamedov
N. A. Abdullayev
V. N. Zverev
A. Alfonsov
V. Kataev
B. Büchner
E. F. Schwier
S. Kumar
A. Kimura
L. Petaccia
G. Di Santo
R. C. Vidal
S. Schatz
K. Kißner
M. Ünzelmann
C. H. Min
Simon Moser
T. R. F. Peixoto
F. Reinert
A. Ernst
P. M. Echenique
A. Isaeva
E. V. Chulkov
机构
[1] Centro Mixto CSIC-UPV/EHU,Centro de Física de Materiales (CFM
[2] Basque Foundation for Science,MPC)
[3] Donostia International Physics Center (DIPC),IKERBASQUE
[4] Saint Petersburg State University,Experimentelle Physik VII
[5] Universität Würzburg,Faculty of Chemistry and Food Chemistry
[6] Technische Universität Dresden,Institute of Physics
[7] Azerbaijan National Academy of Sciences,Institut für Theoretische Physik
[8] Azerbaijan State Oil and Industry University,Institute of Strength Physics and Materials Science
[9] Institute for Solid State Research,Elektronenspeicherring BESSY II
[10] Leibniz IFW Dresden,Institute of Catalysis and Inorganic Chemistry
[11] Departamento de Física de Materiales UPV/EHU,Institute of Solid State Physics
[12] Johannes Kepler Universität,Faculty of Physics
[13] Tomsk State University,Hiroshima Synchrotron Radiation Center
[14] Russian Academy of Sciences,Department of Physical Sciences, Graduate School of Science
[15] Helmholtz-Zentrum Berlin für Materialien und Energie,Advanced Light Source
[16] Azerbaijan National Academy of Science,undefined
[17] Russian Academy of Sciences,undefined
[18] Technische Universität Dresden,undefined
[19] Hiroshima University,undefined
[20] Hiroshima University,undefined
[21] Elettra Sincrotrone Trieste,undefined
[22] Lawrence Berkeley National Laboratory,undefined
[23] Max-Planck-Institut für Mikrostrukturphysik,undefined
来源
Nature | 2019年 / 576卷
关键词
D O I
暂无
中图分类号
学科分类号
摘要
Magnetic topological insulators are narrow-gap semiconductor materials that combine non-trivial band topology and magnetic order1. Unlike their nonmagnetic counterparts, magnetic topological insulators may have some of the surfaces gapped, which enables a number of exotic phenomena that have potential applications in spintronics1, such as the quantum anomalous Hall effect2 and chiral Majorana fermions3. So far, magnetic topological insulators have only been created by means of doping nonmagnetic topological insulators with 3d transition-metal elements; however, such an approach leads to strongly inhomogeneous magnetic4 and electronic5 properties of these materials, restricting the observation of important effects to very low temperatures2,3. An intrinsic magnetic topological insulator—a stoichiometric well ordered magnetic compound—could be an ideal solution to these problems, but no such material has been observed so far. Here we predict by ab initio calculations and further confirm using various experimental techniques the realization of an antiferromagnetic topological insulator in the layered van der Waals compound MnBi2Te4. The antiferromagnetic ordering  that MnBi2Te4  shows makes it invariant with respect to the combination of the time-reversal and primitive-lattice translation symmetries, giving rise to a ℤ2 topological classification; ℤ2 = 1 for MnBi2Te4, confirming its topologically nontrivial nature. Our experiments indicate that the symmetry-breaking (0001) surface of MnBi2Te4 exhibits a large bandgap in the topological surface state. We expect this property to eventually enable the observation of a number of fundamental phenomena, among them quantized magnetoelectric coupling6–8 and axion electrodynamics9,10. Other exotic phenomena could become accessible at much higher temperatures than those reached so far, such as the quantum anomalous Hall effect2 and chiral Majorana fermions3.
引用
收藏
页码:416 / 422
页数:6
相关论文
共 50 条
  • [1] Prediction and observation of an antiferromagnetic topological insulator
    Otrokov, M. M.
    Klimovskikh, I. I.
    Bentmann, H.
    Estyunin, D.
    Zeugner, A.
    Aliev, Z. S.
    Gass, S.
    Wolter, A. U. B.
    Koroleva, A. V.
    Shikin, A. M.
    Blanco-Rey, M.
    Hoffmann, M.
    Rusinov, I. P.
    Vyazovskaya, A. Yu.
    Eremeev, S. V.
    Koroteev, Yu. M.
    Kuznetsov, V. M.
    Freyse, F.
    Sanchez-Barriga, J.
    Amiraslanov, I. R.
    Babanly, M. B.
    Mamedov, N. T.
    Abdullayev, N. A.
    Zverev, V. N.
    Alfonsov, A.
    Kataev, V.
    Buechner, B.
    Schwier, E. F.
    Kumar, S.
    Kimura, A.
    Petaccia, L.
    Di Santo, G.
    Vidal, R. C.
    Schatz, S.
    Kissner, K.
    Uenzelmann, M.
    Min, C. H.
    Moser, Simon
    Peixoto, T. R. F.
    Reinert, F.
    Ernst, A.
    Echenique, P. M.
    Isaeva, A.
    Chulkov, E. V.
    [J]. NATURE, 2019, 576 (7787) : 416 - +
  • [2] Observation of Interfacial Antiferromagnetic Coupling between Magnetic Topological Insulator and Antiferromagnetic Insulator
    Wang, Fei
    Xiao, Di
    Yuan, Wei
    Jiang, Jue
    Zhao, Yi-Fan
    Zhang, Ling
    Yao, Yunyan
    Liu, Wei
    Zhang, Zhidong
    Liu, Chaoxing
    Shi, Jing
    Han, Wei
    Chan, Moses H. W.
    Samarth, Nitin
    Chang, Cui-Zu
    [J]. NANO LETTERS, 2019, 19 (05) : 2945 - 2952
  • [3] Antiferromagnetic topological insulator
    Eroshenko, Yu N.
    [J]. PHYSICS-USPEKHI, 2020, 63 (02) : 207 - 207
  • [4] Observation of Magnetism-Induced Topological Edge State in Antiferromagnetic Topological Insulator MnBi4Te7
    Xu, Hao-Ke
    Gu, Mingqiang
    Fei, Fucong
    Gu, Yi-Sheng
    Liu, Dang
    Yu, Qiao-Yan
    Xue, Sha-Sha
    Ning, Xu-Hui
    Chen, Bo
    Xie, Hangkai
    Zhu, Zhen
    Guan, Dandan
    Wang, Shiyong
    Li, Yaoyi
    Liu, Canhua
    Liu, Qihang
    Song, Fengqi
    Zheng, Hao
    Jia, Jinfeng
    [J]. ACS NANO, 2022, 16 (06) : 9810 - 9818
  • [5] Charge-magnon conversion at the topological insulator/antiferromagnetic insulator interface
    Liao, L. Y.
    Zhou, Z. Y.
    Zhou, Y. J.
    Zhu, W. X.
    Pan, F.
    Song, C.
    [J]. PHYSICAL REVIEW B, 2020, 102 (11)
  • [6] Observation of Magnon Polarons in a Uniaxial Antiferromagnetic Insulator
    Li, Junxue
    Simensen, Haakon T.
    Reitz, Derek
    Sun, Qiyang
    Yuan, Wei
    Li, Chen
    Tserkovnyak, Yaroslav
    Brataas, Arne
    Shi, Jing
    [J]. PHYSICAL REVIEW LETTERS, 2020, 125 (21)
  • [7] Observation of topological order in a superconducting doped topological insulator
    Wray, L. Andrew
    Xu, Su-Yang
    Xia, Yuqi
    Hor, Yew San
    Qian, Dong
    Fedorov, Alexei V.
    Lin, Hsin
    Bansil, Arun
    Cava, Robert J.
    Hasan, M. Zahid
    [J]. NATURE PHYSICS, 2010, 6 (11) : 855 - 859
  • [8] Prediction of Weyl semimetal and antiferromagnetic topological insulator phases in Bi2MnSe4
    Sugata Chowdhury
    Kevin F. Garrity
    Francesca Tavazza
    [J]. npj Computational Materials, 5
  • [9] Prediction of Weyl semimetal and antiferromagnetic topological insulator phases in Bi2MnSe4
    Chowdhury, Sugata
    Garrity, Kevin F.
    Tavazza, Francesca
    [J]. NPJ COMPUTATIONAL MATERIALS, 2019, 5 (1)
  • [10] Observation of topological order in a superconducting doped topological insulator
    L. Andrew Wray
    Su-Yang Xu
    Yuqi Xia
    Yew San Hor
    Dong Qian
    Alexei V. Fedorov
    Hsin Lin
    Arun Bansil
    Robert J. Cava
    M. Zahid Hasan
    [J]. Nature Physics, 2010, 6 : 855 - 859