A functional model for polynomially posinormal operators

被引:0
|
作者
Stoyko Kostov
Ivan Todorov
机构
[1] Indiana University,Department of Mathematics
[2] University of the Aegean,Department of Mathematics
来源
关键词
Primary 47B20; Secondary 46F12;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper we introduce a class of operators naturally extending the classes of hyponormal and posinormal operators. For this class we construct a generating family of eigendistributions, unitary invariants and a functional model.
引用
收藏
页码:61 / 79
页数:18
相关论文
共 50 条
  • [21] Polynomially unbounded product of two polynomially bounded operators
    Petrovic, S
    INTEGRAL EQUATIONS AND OPERATOR THEORY, 1997, 27 (04) : 473 - 477
  • [22] Closed-range posinormal operators and their products
    Bourdon, Paul
    Kubrusly, Carlos
    Le, Trieu
    Thompson, Derek
    LINEAR ALGEBRA AND ITS APPLICATIONS, 2023, 671 : 38 - 58
  • [23] Totally P-posinormal operators are subscalar
    Nickolov, R
    Zhelev, Z
    INTEGRAL EQUATIONS AND OPERATOR THEORY, 2002, 43 (03) : 346 - 355
  • [24] Tensor product of proper contractions, stable and posinormal operators
    Kubrusly, Carlos S.
    PUBLICATIONES MATHEMATICAE-DEBRECEN, 2007, 71 (3-4): : 425 - 437
  • [25] Weyl-type theorems for unbounded posinormal operators
    A. Gupta
    K. Mamtani
    Journal of Contemporary Mathematical Analysis (Armenian Academy of Sciences), 2017, 52 : 191 - 197
  • [26] Classes of Operators Related to Polynomially Normal Operators
    Mahmoud, Sid Ahmed Ould Ahmed
    Ahmad, Naeem
    IRANIAN JOURNAL OF SCIENCE, 2023, 47 (02) : 435 - 443
  • [27] Dilations for polynomially bounded operators
    Exner, GR
    Jo, YS
    Jung, IB
    JOURNAL OF THE KOREAN MATHEMATICAL SOCIETY, 2005, 42 (05) : 893 - 912
  • [28] Polynomially bounded operators, a survey
    Davidson, KR
    OPERATOR ALGEBRAS AND APPLICATIONS, 1997, 495 : 145 - 162
  • [29] DECOMPOSITIONS OF POLYNOMIALLY BOUNDED OPERATORS
    MLAK, W
    BULLETIN DE L ACADEMIE POLONAISE DES SCIENCES-SERIE DES SCIENCES MATHEMATIQUES ASTRONOMIQUES ET PHYSIQUES, 1973, 21 (04): : 317 - 322
  • [30] On algebras of polynomially compact operators
    Kandic, Marko
    LINEAR & MULTILINEAR ALGEBRA, 2016, 64 (06): : 1185 - 1196