A functional model for polynomially posinormal operators

被引:0
|
作者
Stoyko Kostov
Ivan Todorov
机构
[1] Indiana University,Department of Mathematics
[2] University of the Aegean,Department of Mathematics
来源
关键词
Primary 47B20; Secondary 46F12;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper we introduce a class of operators naturally extending the classes of hyponormal and posinormal operators. For this class we construct a generating family of eigendistributions, unitary invariants and a functional model.
引用
收藏
页码:61 / 79
页数:18
相关论文
共 50 条
  • [11] Totally P-posinormal operators are subscalar
    R. Nickolov
    Zh. Zhelev
    Integral Equations and Operator Theory, 2002, 43 : 346 - 355
  • [12] Polynomially bounded operators
    Davidson, KR
    Paulsen, VI
    JOURNAL FUR DIE REINE UND ANGEWANDTE MATHEMATIK, 1997, 487 : 153 - 170
  • [13] Polynomially normal operators
    Dragan S. Djordjević
    Muneo Chō
    Dijana Mosić
    Annals of Functional Analysis, 2020, 11 : 493 - 504
  • [14] Polynomially EP operators
    Dijana Mosić
    Miloš D. Cvetković
    Aequationes mathematicae, 2022, 96 : 1075 - 1087
  • [15] Polynomially normal operators
    Djordjevic, Dragan S.
    Cho, Muneo
    Mosic, Dijana
    ANNALS OF FUNCTIONAL ANALYSIS, 2020, 11 (03) : 493 - 504
  • [16] On Polynomially Riesz Operators
    Zlatanovic, Snezana C. Zivkovic
    Djordjevic, Dragan S.
    Harte, Robin E.
    Duggal, Bhagwati P.
    FILOMAT, 2014, 28 (01) : 197 - 205
  • [17] Polynomially continuous operators
    Joaquín M. Gutiérrez
    José G. Llavona
    Israel Journal of Mathematics, 1997, 102 : 179 - 187
  • [18] Polynomially continuous operators
    Gutierrez, JM
    Llavona, JG
    ISRAEL JOURNAL OF MATHEMATICS, 1997, 102 (1) : 179 - 187
  • [19] Polynomially EP operators
    Mosic, Dijana
    Cvetkovic, Milos D.
    AEQUATIONES MATHEMATICAE, 2022, 96 (05) : 1075 - 1087
  • [20] Polynomially unbounded product of two polynomially bounded operators
    Srdjan Petrović
    Integral Equations and Operator Theory, 1997, 27 : 473 - 477