Polynomially continuous operators

被引:0
|
作者
Joaquín M. Gutiérrez
José G. Llavona
机构
[1] Universidad Politécnica de Madrid,Departamento de Matemáticas, ETS de Ingenieros Industriales
[2] Universidad Complutense de Madrid,Departamento de Análisis Matemático, Facultad de Matemáticas
来源
关键词
Banach Space; American Mathematical Society; Homogeneous Polynomial; Linear Topological Space; Infinite Subset;
D O I
暂无
中图分类号
学科分类号
摘要
A mapping between Banach spaces is said to be polynomially continuous if its restriction to any bounded set is uniformly continuous for the weak polynomial topology. Every compact (linear) operator is polynomially continuous. We prove that every polynomially continuous operator is weakly compact.
引用
收藏
页码:179 / 187
页数:8
相关论文
共 50 条
  • [1] Polynomially continuous operators
    Gutierrez, JM
    Llavona, JG
    ISRAEL JOURNAL OF MATHEMATICS, 1997, 102 (1) : 179 - 187
  • [2] Polynomially bounded operators
    Davidson, KR
    Paulsen, VI
    JOURNAL FUR DIE REINE UND ANGEWANDTE MATHEMATIK, 1997, 487 : 153 - 170
  • [3] Polynomially normal operators
    Dragan S. Djordjević
    Muneo Chō
    Dijana Mosić
    Annals of Functional Analysis, 2020, 11 : 493 - 504
  • [4] Polynomially EP operators
    Dijana Mosić
    Miloš D. Cvetković
    Aequationes mathematicae, 2022, 96 : 1075 - 1087
  • [5] Polynomially normal operators
    Djordjevic, Dragan S.
    Cho, Muneo
    Mosic, Dijana
    ANNALS OF FUNCTIONAL ANALYSIS, 2020, 11 (03) : 493 - 504
  • [6] On Polynomially Riesz Operators
    Zlatanovic, Snezana C. Zivkovic
    Djordjevic, Dragan S.
    Harte, Robin E.
    Duggal, Bhagwati P.
    FILOMAT, 2014, 28 (01) : 197 - 205
  • [7] Polynomially EP operators
    Mosic, Dijana
    Cvetkovic, Milos D.
    AEQUATIONES MATHEMATICAE, 2022, 96 (05) : 1075 - 1087
  • [8] Polynomially unbounded product of two polynomially bounded operators
    Srdjan Petrović
    Integral Equations and Operator Theory, 1997, 27 : 473 - 477
  • [9] Polynomially unbounded product of two polynomially bounded operators
    Petrovic, S
    INTEGRAL EQUATIONS AND OPERATOR THEORY, 1997, 27 (04) : 473 - 477
  • [10] Classes of Operators Related to Polynomially Normal Operators
    Mahmoud, Sid Ahmed Ould Ahmed
    Ahmad, Naeem
    IRANIAN JOURNAL OF SCIENCE, 2023, 47 (02) : 435 - 443