Let H be a complex infinite-dimensional separable Hilbert space. An operator T in L(R) is called totally P-posinormal (see [9]) iff there is a polynomial P with zero constant term such that parallel to(P) over bar (T*(z))hparallel to less than or equal to M(z)parallel toT(z)hparallel to for each h is an element of H, where T-z = T-zI and M(z) is bounded on the compacts of C. In this paper we prove that every totally P-posinormal operator is subscalar, i.e. it is the restriction of a generalized scalar operator to an invariant subspace. Further, a list of some important corollaries about Bishop's property beta and the existence of invariant subspaces is presented.
机构:
Mohamed El Bachir El Ibrahimi Univ, Fac Math & Informat, Dept Math, Bordj Bou Arreridj, AlgeriaMohamed El Bachir El Ibrahimi Univ, Fac Math & Informat, Dept Math, Bordj Bou Arreridj, Algeria
Mecheri, Salah
Prasad, T.
论文数: 0引用数: 0
h-index: 0
机构:
Univ Calicut, Dept Math, Thenhipalam 673635, Kerala, IndiaMohamed El Bachir El Ibrahimi Univ, Fac Math & Informat, Dept Math, Bordj Bou Arreridj, Algeria
机构:
Pontificia Univ Catolica Rio de Janeiro, BR-22453900 Rio De Janeiro, RJ, BrazilPontificia Univ Catolica Rio de Janeiro, BR-22453900 Rio De Janeiro, RJ, Brazil
Kubrusly, C. S.
Vieira, P. C. M.
论文数: 0引用数: 0
h-index: 0
机构:
Natl Lab Sci Computat, BR-25651070 Petropolis, RJ, BrazilPontificia Univ Catolica Rio de Janeiro, BR-22453900 Rio De Janeiro, RJ, Brazil
Vieira, P. C. M.
Zanni, J.
论文数: 0引用数: 0
h-index: 0
机构:
Pontificia Univ Catolica Rio de Janeiro, BR-22453900 Rio De Janeiro, RJ, BrazilPontificia Univ Catolica Rio de Janeiro, BR-22453900 Rio De Janeiro, RJ, Brazil