A functional model for polynomially posinormal operators

被引:0
|
作者
Stoyko Kostov
Ivan Todorov
机构
[1] Indiana University,Department of Mathematics
[2] University of the Aegean,Department of Mathematics
来源
关键词
Primary 47B20; Secondary 46F12;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper we introduce a class of operators naturally extending the classes of hyponormal and posinormal operators. For this class we construct a generating family of eigendistributions, unitary invariants and a functional model.
引用
收藏
页码:61 / 79
页数:18
相关论文
共 50 条
  • [1] A functional model for polynomially posinormal operators
    Kostov, S
    Todorov, I
    INTEGRAL EQUATIONS AND OPERATOR THEORY, 2001, 40 (01) : 61 - 79
  • [2] ANALYTIC EXTENSION OF TOTALLY POLYNOMIALLY POSINORMAL OPERATORS
    Mecheri, Salah
    Prasad, T.
    MATHEMATICAL REPORTS, 2021, 23 (03): : 359 - 372
  • [3] Subscalarity for extension of totally polynomially posinormal operators
    T. Prasad
    Positivity, 2023, 27
  • [4] Subscalarity for extension of totally polynomially posinormal operators
    Prasad, T.
    POSITIVITY, 2023, 27 (03)
  • [5] POSINORMAL OPERATORS
    RHALY, HC
    JOURNAL OF THE MATHEMATICAL SOCIETY OF JAPAN, 1994, 46 (04) : 587 - 605
  • [6] POWERS OF POSINORMAL OPERATORS
    Kubrusly, C. S.
    Vieira, P. C. M.
    Zanni, J.
    OPERATORS AND MATRICES, 2016, 10 (01): : 15 - 27
  • [7] A superclass of the posinormal operators
    Rhaly, H. Crawford, Jr.
    NEW YORK JOURNAL OF MATHEMATICS, 2014, 20 : 497 - 506
  • [8] A functional calculus for pairs of commuting polynomially bounded operators
    Ionescu, A
    HOUSTON JOURNAL OF MATHEMATICS, 1998, 24 (01): : 97 - 104
  • [9] Weyl's theorems for posinormal operators
    Duggal, BP
    Kubrusly, C
    JOURNAL OF THE KOREAN MATHEMATICAL SOCIETY, 2005, 42 (03) : 529 - 541
  • [10] n-POWER-POSINORMAL OPERATORS
    Beiba, El Moctar Ould
    METHODS OF FUNCTIONAL ANALYSIS AND TOPOLOGY, 2021, 27 (01): : 18 - 24