Weyl's theorems for posinormal operators

被引:0
|
作者
Duggal, BP [1 ]
Kubrusly, C [1 ]
机构
[1] Pontificia Univ Catolica Rio de Janeiro, BR-22453900 Rio De Janeiro, Brazil
关键词
Weyl's theorems; single valued extension property; posinormal operators;
D O I
暂无
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
An operator T belonging to the algebra B(H) of bounded linear transformations on a Hilbert H into itself is said to be posinormal if there exists a positive operator P is an element of B(H) such that TT* = T* PT. A posinormal operator T is said to be conditionally totally posinormal (resp., totally posinormal), shortened to T is an element of CTP (resp., T is an element of TP), if to each complex number lambda there corresponds a positive operator P-lambda such that vertical bar(T-lambda I)*vertical bar(2) = vertical bar P-lambda(1/2) (T-lambda I)vertical bar(2) (resp., if there exists a positive operator P such that vertical bar(T -lambda I)*vertical bar(2) = vertical bar P-1/2(T-lambda I)vertical bar(2) for all lambda). This paper proves Weyl's theorem type results for TP and CTP operators. If A is an element of TP, if B* is an element of CTP is isoloid and if d(AB) is an element of B(B(H)) denotes either of the elementary operators delta(AB)(X) = AX - XB and Delta(AB)(X) = AXB - X, then it is proved that d(AB) satisfies Weyl's theorem and d(AB)* satisfies alpha-Weyl's theorem.
引用
收藏
页码:529 / 541
页数:13
相关论文
共 50 条
  • [1] Weyl-type theorems for unbounded posinormal operators
    A. Gupta
    K. Mamtani
    Journal of Contemporary Mathematical Analysis (Armenian Academy of Sciences), 2017, 52 : 191 - 197
  • [2] Weyl-type theorems for unbounded posinormal operators
    Gupta, A.
    Mamtani, K.
    JOURNAL OF CONTEMPORARY MATHEMATICAL ANALYSIS-ARMENIAN ACADEMY OF SCIENCES, 2017, 52 (04): : 191 - 197
  • [3] Weyl's theorems for some classes of operators
    Aiena, P
    Villafañe, F
    INTEGRAL EQUATIONS AND OPERATOR THEORY, 2005, 53 (04) : 453 - 466
  • [4] Weyl’s Theorems for Some Classes of Operators
    Pietro Aiena
    Fernando Villafañe
    Integral Equations and Operator Theory, 2005, 53 : 453 - 466
  • [5] WEYL'S TYPE THEOREMS AND HYPERCYCLIC OPERATORS
    Rashid, M. H. M.
    ACTA MATHEMATICA SCIENTIA, 2012, 32 (02) : 539 - 551
  • [6] WEYL’S TYPE THEOREMS AND HYPERCYCLIC OPERATORS
    M.H.M.Rashid
    Acta Mathematica Scientia, 2012, 32 (02) : 539 - 551
  • [7] Generalized Weyl's theorems for polaroid operators
    Carpintero, C.
    Munoz, D.
    Rosas, E.
    Garcia, O.
    Sanabria, J.
    CARPATHIAN JOURNAL OF MATHEMATICS, 2011, 27 (01) : 24 - 33
  • [9] WEYL TYPE THEOREMS AND CLASS A(s, t) OPERATORS
    Rashid, Mohammad H. M.
    Zguitti, Hassane
    MATHEMATICAL INEQUALITIES & APPLICATIONS, 2011, 14 (03): : 581 - 594
  • [10] Weyl's Theorems and Extensions of Bounded Linear Operators
    Aiena, Pietro
    Cho, Muneo
    Zhang, Lingling
    TOKYO JOURNAL OF MATHEMATICS, 2012, 35 (02) : 279 - 289