Semi-parametric models for satisfaction with income

被引:0
|
作者
Charles Bellemare
Bertrand Melenberg
Arthur van Soest
机构
[1] Tilburg University,Department of Econometrics
关键词
Semi-parametric estimation; Ordered response; Equivalence scales;
D O I
10.1007/s10258-002-0006-z
中图分类号
学科分类号
摘要
An overview is presented of some parametric and semi-parametric models, estimators, and specification tests that can be used to analyze ordered response variables. In particular, limited dependent variable models that generalize ordered probit are compared to regression models that generalize the linear model. These techniques are then applied to analyze how self-reported satisfaction with household income relates to household income, family composition, and other background variables. Data are drawn from the 1998 wave of the German Socio-Economic Panel. The results are used to estimate equivalence scales and the cost of children. We find that the standard ordered probit model is rejected, while some semi-parametric specifications survive specification tests against nonparametric alternatives. The estimated equivalence scales, however, are often similar for the parametric and semi-parametric specifications.
引用
下载
收藏
页码:181 / 203
页数:22
相关论文
共 50 条
  • [31] Generalized linear models in software reliability: Parametric & semi-parametric approaches
    ElAroui, MA
    Lavergne, C
    IEEE TRANSACTIONS ON RELIABILITY, 1996, 45 (03) : 463 - 470
  • [32] Measurement errors in semi-parametric generalised regression models
    Hattab, Mohammad W.
    Ruppert, David
    AUSTRALIAN & NEW ZEALAND JOURNAL OF STATISTICS, 2023, 65 (04) : 344 - 363
  • [33] Minimum-entropy estimation in semi-parametric models
    Wolsztynski, E
    Thierry, E
    Pronzato, L
    SIGNAL PROCESSING, 2005, 85 (05) : 937 - 949
  • [34] SEMI-PARAMETRIC INFERENCE FOR COPULA MODELS FOR TRUNCATED DATA
    Emura, Takeshi
    Wang, Weijing
    Hung, Hui-Nien
    STATISTICA SINICA, 2011, 21 (01) : 349 - 367
  • [35] A comparison of parametric and semi-parametric survival models with artificial neural networks
    Mokarram, Reza
    Emadi, Mahdi
    Rad, Arezou Habibi
    Nooghabi, Mahdi Jabbari
    COMMUNICATIONS IN STATISTICS-SIMULATION AND COMPUTATION, 2018, 47 (03) : 738 - 746
  • [36] Semi-parametric and Parametric Inference of Extreme Value Models for Rainfall Data
    Amir AghaKouchak
    Nasrin Nasrollahi
    Water Resources Management, 2010, 24 : 1229 - 1249
  • [37] Semi-Parametric Models for Negative Binomial Panel Data
    Sutradhar B.C.
    Jowaheer V.
    Rao R.P.
    Sankhya A, 2016, 78 (2): : 269 - 303
  • [38] Semi-Parametric Models for Negative Binomial Panel Data
    Sutradhar, Brajendra C.
    Jowaheer, Vandna
    Rao, R. Prabhakar
    SANKHYA-SERIES A-MATHEMATICAL STATISTICS AND PROBABILITY, 2016, 78 (02): : 269 - 303
  • [39] Semi-parametric specification tests for discrete probability models
    Fang, Y
    JOURNAL OF RISK AND INSURANCE, 2003, 70 (01) : 73 - 84
  • [40] Nonparametric estimation in semi-parametric univariate mixture models
    Cruz-Medina, IR
    Hettmansperger, TP
    JOURNAL OF STATISTICAL COMPUTATION AND SIMULATION, 2004, 74 (07) : 513 - 524