Contractive Multivariate Zipper Fractal Interpolation Functions

被引:2
|
作者
Miculescu, Radu [1 ]
Pasupathi, R. [1 ]
机构
[1] Transilvania Univ Brasov, Fac Math & Comp Sci, Iuliu Maniu St 50, Brasov 500091, Romania
关键词
Multivariate fractal interpolation function; zipper; Edelstein contraction; Picard operator; MINKOWSKI DIMENSION;
D O I
10.1007/s00025-024-02177-5
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper we introduce a new general multivariate fractal interpolation scheme using elements of the zipper methodology. Under the assumption that the corresponding Read-Bajraktarevic operator is well-defined, we enlarge the previous frameworks occurring in the literature, considering the constitutive functions of the iterated function system whose attractor is the graph of the interpolant to be just contractive in the last variable (so, in particular, they can be Banach contractions, Matkowski contractions, or Meir-Keeler contractions in the last variable). The main difficulty that should be overcome in this multivariate framework is the well definedness of the above mentioned operator. We provide three instances when it is guaranteed. We also display some examples that emphasize the generality of our scheme.
引用
收藏
页数:22
相关论文
共 50 条
  • [1] Affine zipper fractal interpolation functions
    Chand, A. K. B.
    Vijender, N.
    Viswanathan, P.
    Tetenov, A., V
    [J]. BIT NUMERICAL MATHEMATICS, 2020, 60 (02) : 319 - 344
  • [2] Zipper rational fractal interpolation functions
    Pasupathi, R.
    Vijay
    Chand, A. K. B.
    Upadhye, N. S.
    [J]. JOURNAL OF ANALYSIS, 2024,
  • [3] Affine zipper fractal interpolation functions
    A. K. B. Chand
    N. Vijender
    P. Viswanathan
    A. V. Tetenov
    [J]. BIT Numerical Mathematics, 2020, 60 : 319 - 344
  • [4] MULTIVARIATE FRACTAL INTERPOLATION FUNCTIONS: SOME APPROXIMATION ASPECTS AND AN ASSOCIATED FRACTAL INTERPOLATION OPERATOR
    Pandey, Kshitij Kumar
    Viswanathan, Puthan Veedu
    [J]. Electronic Transactions on Numerical Analysis, 2022, 55 : 627 - 651
  • [5] A new type of zipper fractal interpolation surfaces and associated bivariate zipper fractal operator
    Garg, Sneha
    Katiyar, Kuldip
    [J]. JOURNAL OF ANALYSIS, 2023, 31 (04): : 3021 - 3043
  • [6] A new type of zipper fractal interpolation surfaces and associated bivariate zipper fractal operator
    Sneha Garg
    Kuldip Katiyar
    [J]. The Journal of Analysis, 2023, 31 (4) : 3021 - 3043
  • [7] Countable zipper fractal interpolation and some elementary aspects of the associated nonlinear zipper fractal operator
    Pandey, K. K.
    Viswanathan, P.
    [J]. AEQUATIONES MATHEMATICAE, 2021, 95 (01) : 175 - 200
  • [8] Countable zipper fractal interpolation and some elementary aspects of the associated nonlinear zipper fractal operator
    K. K. Pandey
    P. Viswanathan
    [J]. Aequationes mathematicae, 2021, 95 : 175 - 200
  • [9] MULTIVARIATE AFFINE FRACTAL INTERPOLATION
    Navascues, M. A.
    Katiyar, S. K.
    Chand, A. K. B.
    [J]. FRACTALS-COMPLEX GEOMETRY PATTERNS AND SCALING IN NATURE AND SOCIETY, 2020, 28 (07)
  • [10] FRACTAL INTERPOLATION FUNCTIONS ON AFFINE FRACTAL INTERPOLATION CURVES
    Ri, Songil
    Nam, Songmin
    Kim, Hyonchol
    [J]. FRACTALS-COMPLEX GEOMETRY PATTERNS AND SCALING IN NATURE AND SOCIETY, 2021, 29 (02)