Zipper rational fractal interpolation functions

被引:1
|
作者
Pasupathi, R. [1 ,2 ]
Vijay [1 ]
Chand, A. K. B. [1 ]
Upadhye, N. S. [1 ]
机构
[1] Indian Inst Technol Madras, Dept Math, Chennai 600036, Tamil Nadu, India
[2] Russian Acad Sci, Siberian Branch, Sobolev Inst Math, Novosibirsk 630090, Russia
来源
关键词
Fractal interpolation function; Zipper; Rational cubic spline; Positivity; Monotonicity; Convexity; SHAPE; SYSTEMS; POSITIVITY;
D O I
10.1007/s41478-024-00796-3
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
A classical piecewise interpolant can be redefined by utilizing horizontal contractive maps that project the entire domain onto subintervals, ensuring uniqueness. By applying the concept of a zipper, this traditional spline approach is expanded into a broader category of piecewise interpolants through the use of a binary vector signature. In particular, we extend rational spline with cubic/quadratic functions with shape parameters to generate a new class of zipper rational interpolants. Further, we fractalize these interpolants to generate zipper rational cubic alpha\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\alpha $$\end{document}-fractal functions. It is demonstrated that the proposed interpolants achieve uniform convergence to a C1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$C<^>1$$\end{document}-data generating function. We establish appropriate constraints on shape parameters, vertical scalings, and signatures to ensure the creation of shape-preserving zipper rational cubic splines and zipper rational cubic alpha\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\alpha $$\end{document}-fractal functions. These theoretical results are substantiated with carefully selected numerical examples.
引用
收藏
页数:30
相关论文
共 50 条
  • [1] Affine zipper fractal interpolation functions
    Chand, A. K. B.
    Vijender, N.
    Viswanathan, P.
    Tetenov, A., V
    [J]. BIT NUMERICAL MATHEMATICS, 2020, 60 (02) : 319 - 344
  • [2] Affine zipper fractal interpolation functions
    A. K. B. Chand
    N. Vijender
    P. Viswanathan
    A. V. Tetenov
    [J]. BIT Numerical Mathematics, 2020, 60 : 319 - 344
  • [3] Contractive Multivariate Zipper Fractal Interpolation Functions
    Miculescu, Radu
    Pasupathi, R.
    [J]. RESULTS IN MATHEMATICS, 2024, 79 (04)
  • [4] Convexity-Preserving Rational Cubic Zipper Fractal Interpolation Curves and Surfaces
    Vijay
    Chand, Arya Kumar Bedabrata
    [J]. MATHEMATICAL AND COMPUTATIONAL APPLICATIONS, 2023, 28 (03)
  • [5] Smooth fractal surfaces derived from bicubic rational fractal interpolation functions
    Fangxun Bao
    Xunxiang Yao
    Qinghua Sun
    Yunfeng Zhang
    Caiming Zhang
    [J]. Science China Information Sciences, 2018, 61
  • [6] Smooth fractal surfaces derived from bicubic rational fractal interpolation functions
    Bao, Fangxun
    Yao, Xunxiang
    Sun, Qinghua
    Zhang, Yunfeng
    Zhang, Caiming
    [J]. SCIENCE CHINA-INFORMATION SCIENCES, 2018, 61 (09)
  • [7] Smooth fractal surfaces derived from bicubic rational fractal interpolation functions
    Fangxun BAO
    Xunxiang YAO
    Qinghua SUN
    Yunfeng ZHANG
    Caiming ZHANG
    [J]. Science China(Information Sciences), 2018, 61 (09) : 335 - 345
  • [8] A new type of zipper fractal interpolation surfaces and associated bivariate zipper fractal operator
    Garg, Sneha
    Katiyar, Kuldip
    [J]. JOURNAL OF ANALYSIS, 2023, 31 (04): : 3021 - 3043
  • [9] A new type of zipper fractal interpolation surfaces and associated bivariate zipper fractal operator
    Sneha Garg
    Kuldip Katiyar
    [J]. The Journal of Analysis, 2023, 31 (4) : 3021 - 3043
  • [10] Some results on the space of rational cubic fractal interpolation functions
    Balasubramani, N.
    Luor, Dah-Chin
    [J]. JOURNAL OF ANALYSIS, 2024,