Smooth fractal surfaces derived from bicubic rational fractal interpolation functions

被引:0
|
作者
Fangxun Bao
Xunxiang Yao
Qinghua Sun
Yunfeng Zhang
Caiming Zhang
机构
[1] Shandong University,School of Mathematics
[2] Shandong University of Finance and Economics,School of Computer Science & Technology
[3] University of Technology Sydney,Faculty of Engineering and Information Technology
来源
关键词
D O I
暂无
中图分类号
学科分类号
摘要
引用
下载
收藏
相关论文
共 50 条
  • [1] Smooth fractal surfaces derived from bicubic rational fractal interpolation functions
    Bao, Fangxun
    Yao, Xunxiang
    Sun, Qinghua
    Zhang, Yunfeng
    Zhang, Caiming
    SCIENCE CHINA-INFORMATION SCIENCES, 2018, 61 (09)
  • [2] Smooth fractal surfaces derived from bicubic rational fractal interpolation functions
    Fangxun BAO
    Xunxiang YAO
    Qinghua SUN
    Yunfeng ZHANG
    Caiming ZHANG
    Science China(Information Sciences), 2018, 61 (09) : 335 - 345
  • [3] Fractal interpolation surfaces derived from Fractal interpolation functions
    Bouboulis, P.
    Dalla, L.
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2007, 336 (02) : 919 - 936
  • [4] Box-counting dimensions of fractal interpolation surfaces derived from fractal interpolation functions
    Feng, Zhigang
    Sun, Xiuqing
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2014, 412 (01) : 416 - 425
  • [5] Zipper rational fractal interpolation functions
    Pasupathi, R.
    Vijay
    Chand, A. K. B.
    Upadhye, N. S.
    JOURNAL OF ANALYSIS, 2024, : 3197 - 3226
  • [6] Bicubic partially blended rational fractal surface for a constrained interpolation problem
    A. K. B. Chand
    P. Viswanathan
    N. Vijender
    Computational and Applied Mathematics, 2018, 37 : 785 - 804
  • [7] Bicubic partially blended rational fractal surface for a constrained interpolation problem
    Chand, A. K. B.
    Viswanathan, P.
    Vijender, N.
    COMPUTATIONAL & APPLIED MATHEMATICS, 2018, 37 (01): : 785 - 804
  • [8] Natural bicubic spline fractal interpolation
    Chand, A. K. B.
    Navascues, M. A.
    NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2008, 69 (11) : 3679 - 3691
  • [9] Constrained and Monotone Curves Derived from Rational Fractal Interpolation
    Sun, Qinghua
    Liu, Tiantian
    Zhang, Yunfeng
    Bao, Fangxun
    Jisuanji Fuzhu Sheji Yu Tuxingxue Xuebao/Journal of Computer-Aided Design and Computer Graphics, 2017, 29 (11): : 2037 - 2046
  • [10] Visualization of constrained data by smooth rational fractal interpolation
    Liu, Jianshun
    Bao, Fangxun
    INTERNATIONAL JOURNAL OF COMPUTER MATHEMATICS, 2016, 93 (09) : 1524 - 1540