Contractive Multivariate Zipper Fractal Interpolation Functions

被引:2
|
作者
Miculescu, Radu [1 ]
Pasupathi, R. [1 ]
机构
[1] Transilvania Univ Brasov, Fac Math & Comp Sci, Iuliu Maniu St 50, Brasov 500091, Romania
关键词
Multivariate fractal interpolation function; zipper; Edelstein contraction; Picard operator; MINKOWSKI DIMENSION;
D O I
10.1007/s00025-024-02177-5
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper we introduce a new general multivariate fractal interpolation scheme using elements of the zipper methodology. Under the assumption that the corresponding Read-Bajraktarevic operator is well-defined, we enlarge the previous frameworks occurring in the literature, considering the constitutive functions of the iterated function system whose attractor is the graph of the interpolant to be just contractive in the last variable (so, in particular, they can be Banach contractions, Matkowski contractions, or Meir-Keeler contractions in the last variable). The main difficulty that should be overcome in this multivariate framework is the well definedness of the above mentioned operator. We provide three instances when it is guaranteed. We also display some examples that emphasize the generality of our scheme.
引用
收藏
页数:22
相关论文
共 50 条
  • [31] On the integral transform of fractal interpolation functions
    Agathiyan, A.
    Gowrisankar, A.
    Fataf, Nur Aisyah Abdul
    [J]. MATHEMATICS AND COMPUTERS IN SIMULATION, 2024, 222 : 209 - 224
  • [32] Wavelets are piecewise fractal interpolation functions
    Hardin, DP
    [J]. FRACTALS IN MULTIMEDIA, 2002, 132 : 121 - 135
  • [33] Energy and Laplacian of fractal interpolation functions
    Xiao-hui Li
    Huo-jun Ruan
    [J]. Applied Mathematics-A Journal of Chinese Universities, 2017, 32 : 201 - 210
  • [34] FRACTAL DIMENSION OF MULTIVARIATE α-FRACTAL FUNCTIONS AND APPROXIMATION ASPECTS
    Pandey, Megha
    Agrawal, Vishal
    Som, Tanmoy
    [J]. FRACTALS-COMPLEX GEOMETRY PATTERNS AND SCALING IN NATURE AND SOCIETY, 2022, 30 (07)
  • [35] FRACTAL DIMENSION OF MULTIVARIATE α -FRACTAL FUNCTIONS AND APPROXIMATION ASPECTS
    Pandey, MEGHA
    Agrawal, VISHAL
    Som, TANMOY
    [J]. Fractals, 2022, 30 (07):
  • [36] Interpolation and superpositions of multivariate continuous functions
    S. S. Marchenkov
    [J]. Mathematical Notes, 2013, 93 : 571 - 577
  • [37] Sparse interpolation of multivariate rational functions
    Cuyt, Annie
    Lee, Wen-shin
    [J]. THEORETICAL COMPUTER SCIENCE, 2011, 412 (16) : 1445 - 1456
  • [38] Interpolation and superpositions of multivariate continuous functions
    Marchenkov, S. S.
    [J]. MATHEMATICAL NOTES, 2013, 93 (3-4) : 571 - 577
  • [39] Approximation by the linear fractal interpolation functions with the same fractal dimension
    Liang, Y. S.
    [J]. EUROPEAN PHYSICAL JOURNAL-SPECIAL TOPICS, 2023, 232 (07): : 1071 - 1076
  • [40] CONSTRUCTION OF MONOTONOUS APPROXIMATION BY FRACTAL INTERPOLATION FUNCTIONS AND FRACTAL DIMENSIONS
    Yu, Binyan
    Liang, Yongshun
    [J]. FRACTALS-COMPLEX GEOMETRY PATTERNS AND SCALING IN NATURE AND SOCIETY, 2024, 32 (02)