MULTIVARIATE AFFINE FRACTAL INTERPOLATION

被引:7
|
作者
Navascues, M. A. [1 ]
Katiyar, S. K. [2 ]
Chand, A. K. B. [3 ]
机构
[1] Univ Zaragoza, Dept Matemat Aplicada, C Maria de Luna 3, Zaragoza 50018, Spain
[2] SRM Inst Sci & Technol, Dept Math, Chennai 603203, Tamil Nadu, India
[3] Indian Inst Technol Madras, Dept Math, Chennai 600036, Tamil Nadu, India
关键词
Iterated Function System; Fractals; Fractal Interpolation Functions; Smooth Fractal Function; Fractal Operator; SYSTEMS;
D O I
10.1142/S0218348X20501364
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Fractal interpolation functions capture the irregularity of some data very effectively in comparison with the classical interpolants. They yield a new technique for fitting experimental data sampled from real world signals, which are usually difficult to represent using the classical approaches. The affine fractal interpolants constitute a generalization of the broken line interpolation, which appears as a particular case of the linear self-affine functions for specific values of the scale parameters. We study the Lp convergence of this type of interpolants for 1 <= p < <infinity> extending in this way the results available in the literature. In the second part, the affine approximants are defined in higher dimensions via product of interpolation spaces, considering rectangular grids in the product intervals. The associate operator of projection is considered. Some properties of the new functions are established and the aforementioned operator on the space of continuous functions defined on a multidimensional compact rectangle is studied.
引用
收藏
页数:9
相关论文
共 50 条
  • [1] FRACTAL INTERPOLATION FUNCTIONS ON AFFINE FRACTAL INTERPOLATION CURVES
    Ri, Songil
    Nam, Songmin
    Kim, Hyonchol
    [J]. FRACTALS-COMPLEX GEOMETRY PATTERNS AND SCALING IN NATURE AND SOCIETY, 2021, 29 (02)
  • [2] Affine zipper fractal interpolation functions
    A. K. B. Chand
    N. Vijender
    P. Viswanathan
    A. V. Tetenov
    [J]. BIT Numerical Mathematics, 2020, 60 : 319 - 344
  • [3] Affine recurrent fractal interpolation functions
    N. Balasubramani
    A. Gowrisankar
    [J]. The European Physical Journal Special Topics, 2021, 230 : 3765 - 3779
  • [4] Univariable affine fractal interpolation functions
    V. Drakopoulos
    N. Vijender
    [J]. Theoretical and Mathematical Physics, 2021, 207 : 689 - 700
  • [5] Error bounds for affine fractal interpolation
    Navascues, M. A.
    Sebastian, M. V.
    [J]. MATHEMATICAL INEQUALITIES & APPLICATIONS, 2006, 9 (02): : 273 - 288
  • [6] Affine zipper fractal interpolation functions
    Chand, A. K. B.
    Vijender, N.
    Viswanathan, P.
    Tetenov, A., V
    [J]. BIT NUMERICAL MATHEMATICS, 2020, 60 (02) : 319 - 344
  • [7] Affine recurrent fractal interpolation functions
    Balasubramani, N.
    Gowrisankar, A.
    [J]. EUROPEAN PHYSICAL JOURNAL-SPECIAL TOPICS, 2021, 230 (21-22): : 3765 - 3779
  • [8] Univariable affine fractal interpolation functions
    Drakopoulos, V.
    Vijender, N.
    [J]. THEORETICAL AND MATHEMATICAL PHYSICS, 2021, 207 (03) : 689 - 700
  • [9] MULTIVARIATE FRACTAL INTERPOLATION FUNCTIONS: SOME APPROXIMATION ASPECTS AND AN ASSOCIATED FRACTAL INTERPOLATION OPERATOR
    Pandey, Kshitij Kumar
    Viswanathan, Puthan Veedu
    [J]. Electronic Transactions on Numerical Analysis, 2022, 55 : 627 - 651
  • [10] Box dimension of generalized affine fractal interpolation functions
    Jiang, Lai
    Ruan, Huo-Jun
    [J]. JOURNAL OF FRACTAL GEOMETRY, 2023, 10 (3-4) : 279 - 302