Affine recurrent fractal interpolation functions

被引:5
|
作者
Balasubramani, N. [1 ]
Gowrisankar, A. [1 ]
机构
[1] Vellore Inst Technol, Sch Adv Sci, Dept Math, Vellore 632014, Tamil Nadu, India
来源
EUROPEAN PHYSICAL JOURNAL-SPECIAL TOPICS | 2021年 / 230卷 / 21-22期
关键词
VISUALIZATION;
D O I
10.1140/epjs/s11734-021-00306-7
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
In this article, affine recurrent fractal interpolation function is constructed and its convergence analysis is established to understand the approximation properties. Besides, the existence of optimal recurrent fractal interpolation function for given continuous function is discussed. Further, shape preserving aspects of the recurrent fractal interpolation function are investigated by imposing the necessary conditions on the vertical scaling factors. Numerical examples are explored which support the theoretical results.
引用
收藏
页码:3765 / 3779
页数:15
相关论文
共 50 条
  • [1] Affine recurrent fractal interpolation functions
    N. Balasubramani
    A. Gowrisankar
    [J]. The European Physical Journal Special Topics, 2021, 230 : 3765 - 3779
  • [2] FRACTAL INTERPOLATION FUNCTIONS ON AFFINE FRACTAL INTERPOLATION CURVES
    Ri, Songil
    Nam, Songmin
    Kim, Hyonchol
    [J]. FRACTALS-COMPLEX GEOMETRY PATTERNS AND SCALING IN NATURE AND SOCIETY, 2021, 29 (02)
  • [3] Affine zipper fractal interpolation functions
    A. K. B. Chand
    N. Vijender
    P. Viswanathan
    A. V. Tetenov
    [J]. BIT Numerical Mathematics, 2020, 60 : 319 - 344
  • [4] Univariable affine fractal interpolation functions
    V. Drakopoulos
    N. Vijender
    [J]. Theoretical and Mathematical Physics, 2021, 207 : 689 - 700
  • [5] Affine zipper fractal interpolation functions
    Chand, A. K. B.
    Vijender, N.
    Viswanathan, P.
    Tetenov, A., V
    [J]. BIT NUMERICAL MATHEMATICS, 2020, 60 (02) : 319 - 344
  • [6] Univariable affine fractal interpolation functions
    Drakopoulos, V.
    Vijender, N.
    [J]. THEORETICAL AND MATHEMATICAL PHYSICS, 2021, 207 (03) : 689 - 700
  • [7] Box dimension of generalized affine fractal interpolation functions
    Jiang, Lai
    Ruan, Huo-Jun
    [J]. JOURNAL OF FRACTAL GEOMETRY, 2023, 10 (3-4) : 279 - 302
  • [8] ON THE BOUNDS OF SCALING FACTORS OF AFFINE FRACTAL INTERPOLATION FUNCTIONS
    Hsieh, Liang-Yu
    Luor, Dah-Chin
    [J]. JOURNAL OF MATHEMATICAL INEQUALITIES, 2021, 15 (04): : 1321 - 1330
  • [9] Stability of affine coalescence hidden variable fractal interpolation functions
    Chand, A. K. B.
    Kapoor, G. P.
    [J]. NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2008, 68 (12) : 3757 - 3770
  • [10] MULTIVARIATE AFFINE FRACTAL INTERPOLATION
    Navascues, M. A.
    Katiyar, S. K.
    Chand, A. K. B.
    [J]. FRACTALS-COMPLEX GEOMETRY PATTERNS AND SCALING IN NATURE AND SOCIETY, 2020, 28 (07)