ON THE BOUNDS OF SCALING FACTORS OF AFFINE FRACTAL INTERPOLATION FUNCTIONS

被引:0
|
作者
Hsieh, Liang-Yu [1 ]
Luor, Dah-Chin [1 ]
机构
[1] I Shou Univ, Dept Data Sci & Analyt, 1,Sec 1,Syuecheng Rd, Kaohsiung 84001, Taiwan
来源
JOURNAL OF MATHEMATICAL INEQUALITIES | 2021年 / 15卷 / 04期
关键词
Parameter identification; fractals; interpolation; fractal interpolation functions;
D O I
10.7153/jmi-2021-15-89
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper we obtain an upper bound and a lower bound for each vertical scaling factor s(k) of an iterated function system so that the obtained affine fractal interpolation function f(Delta) has the property that R(x)- d <= f(Delta)(x) <= R(x)+ D for all x is an element of I, where D and d are given positive constants and R(x)= mx+ c is a given linear function on I. As an example, we consider the case that the graph of R is the regression line that fits the given data points by least square method.
引用
收藏
页码:1321 / 1330
页数:10
相关论文
共 50 条
  • [1] Error bounds for affine fractal interpolation
    Navascues, M. A.
    Sebastian, M. V.
    [J]. MATHEMATICAL INEQUALITIES & APPLICATIONS, 2006, 9 (02): : 273 - 288
  • [2] FRACTAL INTERPOLATION FUNCTIONS ON AFFINE FRACTAL INTERPOLATION CURVES
    Ri, Songil
    Nam, Songmin
    Kim, Hyonchol
    [J]. FRACTALS-COMPLEX GEOMETRY PATTERNS AND SCALING IN NATURE AND SOCIETY, 2021, 29 (02)
  • [3] Affine zipper fractal interpolation functions
    A. K. B. Chand
    N. Vijender
    P. Viswanathan
    A. V. Tetenov
    [J]. BIT Numerical Mathematics, 2020, 60 : 319 - 344
  • [4] Affine recurrent fractal interpolation functions
    N. Balasubramani
    A. Gowrisankar
    [J]. The European Physical Journal Special Topics, 2021, 230 : 3765 - 3779
  • [5] Univariable affine fractal interpolation functions
    V. Drakopoulos
    N. Vijender
    [J]. Theoretical and Mathematical Physics, 2021, 207 : 689 - 700
  • [6] Affine zipper fractal interpolation functions
    Chand, A. K. B.
    Vijender, N.
    Viswanathan, P.
    Tetenov, A., V
    [J]. BIT NUMERICAL MATHEMATICS, 2020, 60 (02) : 319 - 344
  • [7] Affine recurrent fractal interpolation functions
    Balasubramani, N.
    Gowrisankar, A.
    [J]. EUROPEAN PHYSICAL JOURNAL-SPECIAL TOPICS, 2021, 230 (21-22): : 3765 - 3779
  • [8] Univariable affine fractal interpolation functions
    Drakopoulos, V.
    Vijender, N.
    [J]. THEORETICAL AND MATHEMATICAL PHYSICS, 2021, 207 (03) : 689 - 700
  • [9] Determination of the scaling parameters of affine fractal interpolation functions with the aid of wavelet analysis.
    LevkovichMaslyuk, LI
    [J]. WAVELET APPLICATIONS IN SIGNAL AND IMAGE PROCESSING IV, PTS 1 AND 2, 1996, 2825 : 120 - 129
  • [10] CONSTRAINED FRACTAL INTERPOLATION FUNCTIONS WITH VARIABLE SCALING
    Chand, A. K. B.
    Reddy, K. M.
    [J]. SIBERIAN ELECTRONIC MATHEMATICAL REPORTS-SIBIRSKIE ELEKTRONNYE MATEMATICHESKIE IZVESTIYA, 2018, 15 : 60 - 73