ON THE BOUNDS OF SCALING FACTORS OF AFFINE FRACTAL INTERPOLATION FUNCTIONS

被引:0
|
作者
Hsieh, Liang-Yu [1 ]
Luor, Dah-Chin [1 ]
机构
[1] I Shou Univ, Dept Data Sci & Analyt, 1,Sec 1,Syuecheng Rd, Kaohsiung 84001, Taiwan
来源
JOURNAL OF MATHEMATICAL INEQUALITIES | 2021年 / 15卷 / 04期
关键词
Parameter identification; fractals; interpolation; fractal interpolation functions;
D O I
10.7153/jmi-2021-15-89
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper we obtain an upper bound and a lower bound for each vertical scaling factor s(k) of an iterated function system so that the obtained affine fractal interpolation function f(Delta) has the property that R(x)- d <= f(Delta)(x) <= R(x)+ D for all x is an element of I, where D and d are given positive constants and R(x)= mx+ c is a given linear function on I. As an example, we consider the case that the graph of R is the regression line that fits the given data points by least square method.
引用
收藏
页码:1321 / 1330
页数:10
相关论文
共 50 条