AFFINE FRACTAL FUNCTIONS AS BASES OF CONTINUOUS FUNCTIONS

被引:9
|
作者
Navascues, M. A. [1 ]
机构
[1] Univ Zaragoza, Dept Matemat Aplicada, Escuela Ingn & Arquitectura, Zaragoza 50018, Spain
关键词
28A80; 58C05; 65D05; 65D10; 26A18; Fractal interpolation functions; iterated function systems; Schauder bases;
D O I
10.2989/16073606.2013.779607
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The objective of the present paper is the study of affine transformations of the plane, which provide self-affine curves as attractors. The properties of these curves depend decisively of the coefficients of the system of affnities involved. The corresponding functions are continuous on a compact interval. If the scale factors are properly chosen one can define Schauder bases of C[a, b] composed by affine fractal functions close to polygonals. They can be chosen bounded. The basis constants and the biorthogonal sequence of coefficient functionals are studied.
引用
收藏
页码:415 / 428
页数:14
相关论文
共 50 条
  • [1] FRACTAL FUNCTIONS AND SCHAUDER BASES
    CIESIELSKI, Z
    [J]. COMPUTERS & MATHEMATICS WITH APPLICATIONS, 1995, 30 (3-6) : 283 - 291
  • [2] Affine zipper fractal interpolation functions
    A. K. B. Chand
    N. Vijender
    P. Viswanathan
    A. V. Tetenov
    [J]. BIT Numerical Mathematics, 2020, 60 : 319 - 344
  • [3] Affine recurrent fractal interpolation functions
    N. Balasubramani
    A. Gowrisankar
    [J]. The European Physical Journal Special Topics, 2021, 230 : 3765 - 3779
  • [4] Numerical integration of affine fractal functions
    Navascues, M. A.
    Sebastian, M. V.
    [J]. JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2013, 252 : 169 - 176
  • [5] Univariable affine fractal interpolation functions
    V. Drakopoulos
    N. Vijender
    [J]. Theoretical and Mathematical Physics, 2021, 207 : 689 - 700
  • [6] Affine zipper fractal interpolation functions
    Chand, A. K. B.
    Vijender, N.
    Viswanathan, P.
    Tetenov, A., V
    [J]. BIT NUMERICAL MATHEMATICS, 2020, 60 (02) : 319 - 344
  • [7] Affine recurrent fractal interpolation functions
    Balasubramani, N.
    Gowrisankar, A.
    [J]. EUROPEAN PHYSICAL JOURNAL-SPECIAL TOPICS, 2021, 230 (21-22): : 3765 - 3779
  • [8] Univariable affine fractal interpolation functions
    Drakopoulos, V.
    Vijender, N.
    [J]. THEORETICAL AND MATHEMATICAL PHYSICS, 2021, 207 (03) : 689 - 700
  • [9] FRACTAL INTERPOLATION FUNCTIONS ON AFFINE FRACTAL INTERPOLATION CURVES
    Ri, Songil
    Nam, Songmin
    Kim, Hyonchol
    [J]. FRACTALS-COMPLEX GEOMETRY PATTERNS AND SCALING IN NATURE AND SOCIETY, 2021, 29 (02)
  • [10] ON WEAK SEPARATION PROPERTY FOR AFFINE FRACTAL FUNCTIONS
    Tetenov, A. V.
    Chand, A. K. B.
    [J]. SIBERIAN ELECTRONIC MATHEMATICAL REPORTS-SIBIRSKIE ELEKTRONNYE MATEMATICHESKIE IZVESTIYA, 2015, 12 : 967 - 972