Box dimension of generalized affine fractal interpolation functions

被引:4
|
作者
Jiang, Lai [1 ]
Ruan, Huo-Jun [1 ]
机构
[1] Zhejiang Univ, Sch Math Sci, Hangzhou 310058, Peoples R China
关键词
Fractal interpolation functions; box dimension; iterated function systems; vertical scaling functions; spectral radius; HAUSDORFF; SETS;
D O I
10.4171/JFG/136
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let f be a generalized affine fractal interpolation function with a vertical scaling function S. In this paper, we study dimB Gamma f , the box dimension of the graph of f , under the assumption that S is a Lipschitz function. By introducing vertical scaling matrices, we estimate the upper and the lower bounds of oscillations of f . As a result, we obtain an explicit formula of dimB Gamma f under certain constraint conditions.
引用
收藏
页码:279 / 302
页数:24
相关论文
共 50 条
  • [1] ON THE BOX DIMENSION FOR A CLASS OF NONAFFINE FRACTAL INTERPOLATION FUNCTIONS
    L.Dalla
    V.Drakopoulos
    M.Prodromou
    [J]. Analysis in Theory and Applications, 2003, (03) : 220 - 233
  • [2] EXISTENCE AND BOX DIMENSION OF GENERAL RECURRENT FRACTAL INTERPOLATION FUNCTIONS
    Ruan, Huo-Jun
    Xiao, Jian-Ci
    Yang, Bing
    [J]. BULLETIN OF THE AUSTRALIAN MATHEMATICAL SOCIETY, 2021, 103 (02) : 278 - 290
  • [3] Box dimension and fractional integral of linear fractal interpolation functions
    Ruan, Huo-Jun
    Su, Wei-Yi
    Yao, Kui
    [J]. JOURNAL OF APPROXIMATION THEORY, 2009, 161 (01) : 187 - 197
  • [4] FRACTAL INTERPOLATION FUNCTIONS ON AFFINE FRACTAL INTERPOLATION CURVES
    Ri, Songil
    Nam, Songmin
    Kim, Hyonchol
    [J]. FRACTALS-COMPLEX GEOMETRY PATTERNS AND SCALING IN NATURE AND SOCIETY, 2021, 29 (02)
  • [5] HOLDER EXPONENTS AND BOX DIMENSION FOR SELF-AFFINE FRACTAL FUNCTIONS
    BEDFORD, T
    [J]. CONSTRUCTIVE APPROXIMATION, 1989, 5 (01) : 33 - 48
  • [6] Bilinear fractal interpolation and box dimension
    Barnsley, Michael F.
    Massopust, Peter R.
    [J]. JOURNAL OF APPROXIMATION THEORY, 2015, 192 : 362 - 378
  • [7] On the box dimension of recurrent fractal interpolation functions defined with Matkowski contractions
    Attia, Najmeddine
    Jebali, Hajer
    [J]. JOURNAL OF ANALYSIS, 2024,
  • [8] Affine zipper fractal interpolation functions
    A. K. B. Chand
    N. Vijender
    P. Viswanathan
    A. V. Tetenov
    [J]. BIT Numerical Mathematics, 2020, 60 : 319 - 344
  • [9] Univariable affine fractal interpolation functions
    V. Drakopoulos
    N. Vijender
    [J]. Theoretical and Mathematical Physics, 2021, 207 : 689 - 700
  • [10] Affine recurrent fractal interpolation functions
    N. Balasubramani
    A. Gowrisankar
    [J]. The European Physical Journal Special Topics, 2021, 230 : 3765 - 3779