Box dimension of generalized affine fractal interpolation functions

被引:4
|
作者
Jiang, Lai [1 ]
Ruan, Huo-Jun [1 ]
机构
[1] Zhejiang Univ, Sch Math Sci, Hangzhou 310058, Peoples R China
关键词
Fractal interpolation functions; box dimension; iterated function systems; vertical scaling functions; spectral radius; HAUSDORFF; SETS;
D O I
10.4171/JFG/136
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let f be a generalized affine fractal interpolation function with a vertical scaling function S. In this paper, we study dimB Gamma f , the box dimension of the graph of f , under the assumption that S is a Lipschitz function. By introducing vertical scaling matrices, we estimate the upper and the lower bounds of oscillations of f . As a result, we obtain an explicit formula of dimB Gamma f under certain constraint conditions.
引用
收藏
页码:279 / 302
页数:24
相关论文
共 50 条
  • [31] Fractal interpolation fitness based on BOX dimension's pretreatment
    Wang, Qin
    Jin, Min
    Xi, Lifeng
    Meng, Zhaoling
    [J]. THEORETICAL ADVANCES AND APPLICATIONS OF FUZZY LOGIC AND SOFT COMPUTING, 2007, 42 : 520 - +
  • [32] Box-counting dimensions of fractal interpolation surfaces derived from fractal interpolation functions
    Feng, Zhigang
    Sun, Xiuqing
    [J]. JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2014, 412 (01) : 416 - 425
  • [33] Stability of affine coalescence hidden variable fractal interpolation functions
    Chand, A. K. B.
    Kapoor, G. P.
    [J]. NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2008, 68 (12) : 3757 - 3770
  • [34] EXISTENCE AND BOX DIMENSION OF GENERAL RECURRENT FRACTAL INTERPOLATION FUNCTIONS (vol 103, pg 278, 2021)
    Ruan, Huo-Jun
    Xiao, Jian-Ci
    [J]. BULLETIN OF THE AUSTRALIAN MATHEMATICAL SOCIETY, 2024, 109 (01) : 174 - 176
  • [35] Box Dimension and Fractional Integrals of Multivariate α-Fractal Functions
    Agrawal, Vishal
    Pandey, Megha
    Som, Tanmoy
    [J]. MEDITERRANEAN JOURNAL OF MATHEMATICS, 2023, 20 (03)
  • [36] On a class of fractal functions with graph Box dimension 2
    Xie, TF
    Zhou, SP
    [J]. CHAOS SOLITONS & FRACTALS, 2004, 22 (01) : 135 - 139
  • [37] Explicit relation between Fourier transform and fractal dimension of fractal interpolation functions
    A. Agathiyan
    Nur Aisyah Abdul Fataf
    A. Gowrisankar
    [J]. The European Physical Journal Special Topics, 2023, 232 : 1077 - 1091
  • [38] Explicit relation between Fourier transform and fractal dimension of fractal interpolation functions
    Agathiyan, A.
    Fataf, Nur Aisyah Abdul
    Gowrisankar, A.
    [J]. EUROPEAN PHYSICAL JOURNAL-SPECIAL TOPICS, 2023, 232 (07): : 1077 - 1091
  • [39] MULTIVARIATE AFFINE FRACTAL INTERPOLATION
    Navascues, M. A.
    Katiyar, S. K.
    Chand, A. K. B.
    [J]. FRACTALS-COMPLEX GEOMETRY PATTERNS AND SCALING IN NATURE AND SOCIETY, 2020, 28 (07)
  • [40] Box-counting dimension and analytic properties of hidden variable fractal interpolation functions with function contractivity factors
    Yun, CholHui
    Ri, MiGyong
    [J]. CHAOS SOLITONS & FRACTALS, 2020, 134