Bifurcations in four-dimensional switched systems

被引:0
|
作者
Hany A. Hosham
机构
[1] Taibah University,Department of Mathematics, Faculty of Science
[2] Al-Azhar University,Department of Mathematics, Faculty of Science
关键词
Period-; orbit; Invariant cones; Sliding motion; Poincaré map; Multi-sliding bifurcation;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper, the focus is on a bifurcation of period-K\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\mathcal{K}$\end{document} orbit that can occur in a class of Filippov-type four-dimensional homogenous linear switched systems. We introduce a theoretical framework for analyzing the generalized Poincaré map corresponding to switching manifold. This provides an approach to capturing the possible results concerning the existence of a period-K\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\mathcal{K}$\end{document} orbit, stability, a number of invariant cones, and related bifurcation phenomena. Moreover, the analysis identifies criteria for the existence of multi-sliding bifurcation depending on the sensitivity of the system behavior with respect to changes in parameters. Our results show that a period-two orbit involves multi-sliding bifurcation from a period-one orbit. Further, the existence of invariant torus, crossing-sliding, and grazing-sliding bifurcation is investigated. Numerical simulations are carried out to illustrate the results.
引用
收藏
相关论文
共 50 条
  • [41] Oscillation Criteria for Four-Dimensional Time-Scale Systems
    Elvan Akın
    Gülşah Yeni
    Mediterranean Journal of Mathematics, 2018, 15
  • [42] On two classes of nonlinear dynamical systems: The four-dimensional case
    N. B. Ayupova
    V. P. Golubyatnikov
    Siberian Mathematical Journal, 2015, 56 : 231 - 236
  • [43] Four-dimensional dynamics of MAPK information-processing systems
    Kholodenko, Boris N.
    Birtwistle, Marc R.
    WILEY INTERDISCIPLINARY REVIEWS-SYSTEMS BIOLOGY AND MEDICINE, 2009, 1 (01) : 28 - 44
  • [44] On two classes of nonlinear dynamical systems: The four-dimensional case
    Ayupova, N. B.
    Golubyatnikov, V. P.
    SIBERIAN MATHEMATICAL JOURNAL, 2015, 56 (02) : 231 - 236
  • [45] Real four-dimensional biquadrics
    Krasnov, V. A.
    IZVESTIYA MATHEMATICS, 2011, 75 (02) : 371 - 394
  • [46] Four-dimensional photon cavities
    Wharton, K. B.
    NATURE OF LIGHT: WHAT ARE PHOTONS?, 2007, 6664
  • [47] Towards four-dimensional photonics
    Price, Hannah M.
    Ozawa, Tomoki
    Goldman, Nathan
    Zilberberg, Oded
    Carusotto, Iacopo
    ADVANCES IN PHOTONICS OF QUANTUM COMPUTING, MEMORY, AND COMMUNICATION IX, 2016, 9762
  • [48] Four-Dimensional Regular Polyhedra
    Peter McMullen
    Discrete & Computational Geometry, 2007, 38 : 355 - 387
  • [49] Four-Dimensional Electron Microscopy
    Zewail, Ahmed H.
    SCIENCE, 2010, 328 (5975) : 187 - 193
  • [50] A four-dimensional Neumann ovaloid
    Karp, Lavi
    Lundberg, Erik
    ARKIV FOR MATEMATIK, 2017, 55 (01): : 185 - 198