Bifurcations in four-dimensional switched systems

被引:0
|
作者
Hany A. Hosham
机构
[1] Taibah University,Department of Mathematics, Faculty of Science
[2] Al-Azhar University,Department of Mathematics, Faculty of Science
关键词
Period-; orbit; Invariant cones; Sliding motion; Poincaré map; Multi-sliding bifurcation;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper, the focus is on a bifurcation of period-K\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\mathcal{K}$\end{document} orbit that can occur in a class of Filippov-type four-dimensional homogenous linear switched systems. We introduce a theoretical framework for analyzing the generalized Poincaré map corresponding to switching manifold. This provides an approach to capturing the possible results concerning the existence of a period-K\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\mathcal{K}$\end{document} orbit, stability, a number of invariant cones, and related bifurcation phenomena. Moreover, the analysis identifies criteria for the existence of multi-sliding bifurcation depending on the sensitivity of the system behavior with respect to changes in parameters. Our results show that a period-two orbit involves multi-sliding bifurcation from a period-one orbit. Further, the existence of invariant torus, crossing-sliding, and grazing-sliding bifurcation is investigated. Numerical simulations are carried out to illustrate the results.
引用
收藏
相关论文
共 50 条
  • [21] Four-Dimensional Scaling of Dipole Polarizability in Quantum Systems
    Szabo, Peter
    Goger, Szabolcs
    Charry, Jorge
    Karimpour, Mohammad Reza
    Fedorov, Dmitry, V
    Tkatchenko, Alexandre
    PHYSICAL REVIEW LETTERS, 2022, 128 (07)
  • [22] Polarization states of four-dimensional systems based on biphotons
    Bogdanov, Yu. I.
    Moreva, E. V.
    Maslennikov, G. A.
    Galeev, R. F.
    Straupe, S. S.
    Kulik, S. P.
    PHYSICAL REVIEW A, 2006, 73 (06):
  • [23] ELECTROMAGNETIC EXCITATIONS OF HALL SYSTEMS ON FOUR-DIMENSIONAL SPACE
    Daoud, Mohammed
    Jellal, Ahmed
    Oueld Guejdi, Abdellah
    INTERNATIONAL JOURNAL OF GEOMETRIC METHODS IN MODERN PHYSICS, 2011, 8 (07) : 1465 - 1486
  • [24] Integrating four-dimensional ontology and systems requirements modelling
    Bock, Conrad
    Galey, Charles
    JOURNAL OF ENGINEERING DESIGN, 2019, 30 (10-12) : 477 - 522
  • [25] Four-dimensional graphene
    Drissi, L. B.
    Saidi, E. H.
    Bousmina, M.
    PHYSICAL REVIEW D, 2011, 84 (01):
  • [26] Two-dimensional invariant manifolds in four-dimensional dynamical systems
    Osinga, HM
    COMPUTERS & GRAPHICS-UK, 2005, 29 (02): : 289 - 297
  • [27] Four-Dimensional Ideas
    Todesco, Gian M.
    APPLICATIONS OF MATHEMATICS IN MODELS, ARTIFICIAL NEURAL NETWORKS AND ARTS: MATHEMATICS AND SOCIETY, 2010, : 587 - 599
  • [28] Sudoku is four-dimensional
    Jobbings, Andrew
    MATHEMATICAL GAZETTE, 2010, 94 (530): : 321 - +
  • [29] Four-dimensional visualization
    Kim P.A.
    Kalantaev P.A.
    Pattern Recognition and Image Analysis, 2015, 25 (4) : 642 - 644
  • [30] Codimension-one tangency bifurcations of global Poincare maps of four-dimensional vector fields
    Krauskopf, Bernd
    Lee, Clare M.
    Osinga, Hinke M.
    NONLINEARITY, 2009, 22 (05) : 1091 - 1121