Bifurcations in four-dimensional switched systems

被引:0
|
作者
Hany A. Hosham
机构
[1] Taibah University,Department of Mathematics, Faculty of Science
[2] Al-Azhar University,Department of Mathematics, Faculty of Science
关键词
Period-; orbit; Invariant cones; Sliding motion; Poincaré map; Multi-sliding bifurcation;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper, the focus is on a bifurcation of period-K\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\mathcal{K}$\end{document} orbit that can occur in a class of Filippov-type four-dimensional homogenous linear switched systems. We introduce a theoretical framework for analyzing the generalized Poincaré map corresponding to switching manifold. This provides an approach to capturing the possible results concerning the existence of a period-K\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\mathcal{K}$\end{document} orbit, stability, a number of invariant cones, and related bifurcation phenomena. Moreover, the analysis identifies criteria for the existence of multi-sliding bifurcation depending on the sensitivity of the system behavior with respect to changes in parameters. Our results show that a period-two orbit involves multi-sliding bifurcation from a period-one orbit. Further, the existence of invariant torus, crossing-sliding, and grazing-sliding bifurcation is investigated. Numerical simulations are carried out to illustrate the results.
引用
收藏
相关论文
共 50 条
  • [31] Coefficient criterion for four-dimensional Hopf bifurcations: a complete mathematical characterization and applications to economic dynamics
    Asada, T
    Yoshida, H
    CHAOS SOLITONS & FRACTALS, 2003, 18 (03) : 525 - 536
  • [32] Four-Dimensional Coherent Spectroscopy of Complex Molecular Systems in Solution
    Spencer, Austin P.
    Hutson, William O.
    Harel, Elad
    JOURNAL OF PHYSICAL CHEMISTRY C, 2019, 123 (11): : 6303 - 6315
  • [33] Constructing a class of four-dimensional correlative and switchable hyperchaotic systems
    Yang, Fan
    Li, Dong
    Tu, Hongqing
    FRONTIERS OF MANUFACTURING AND DESIGN SCIENCE, PTS 1-4, 2011, 44-47 : 1802 - +
  • [34] Generalized projective synchronization of two four-dimensional chaotic systems
    Min Fu-Hong
    Wang Zhi-Quan
    ACTA PHYSICA SINICA, 2007, 56 (11) : 6238 - 6244
  • [35] Oscillation Criteria for Four-Dimensional Time-Scale Systems
    Akin, Elvan
    Yeni, Gulsah
    MEDITERRANEAN JOURNAL OF MATHEMATICS, 2018, 15 (05)
  • [36] An applicable formula for the Hopf bifurcation direction of four-dimensional systems
    Cao, JD
    Li, JB
    Lin, YP
    PROCEEDINGS OF THE SECOND ASIAN MATHEMATICAL CONFERENCE 1995, 1998, : 304 - 309
  • [37] Imperfect chimeras in a ring of four-dimensional simplified Lorenz systems
    Parastesh, Fatemeh
    Jafari, Sajad
    Azarnoush, Hamed
    Hatef, Boshra
    Bountis, Anastasios
    CHAOS SOLITONS & FRACTALS, 2018, 110 : 203 - 208
  • [38] Four-Dimensional Optimized Constellations for Coherent Optical Transmission Systems
    Karlsson, Magnus
    Agrell, Erik
    2010 36TH EUROPEAN CONFERENCE AND EXHIBITION ON OPTICAL COMMUNICATION (ECOC), VOLS 1 AND 2, 2010,
  • [39] Typical integrable Hamiltonian systems on a four-dimensional symplectic manifold
    Kalashnikov, VV
    IZVESTIYA MATHEMATICS, 1998, 62 (02) : 261 - 285
  • [40] Bidirectional controlled remote state preparation in four-dimensional systems
    Jiang, She-Xiang
    Zhang, Ru
    MODERN PHYSICS LETTERS A, 2023, 38 (38N39)